Mikhail V. Blagosklonny

Learn More
1 CNRS-UMR8125, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France 2 University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA 3 Centre d’Immunologie INSERM/CNRS/Universite de la Mediterranee de Marseille-Luminy, Case 906, Avenue de Luminy, 13288 Marseille Cedex 9, France 4 The Ben May Institute for Cancer(More)
In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell(More)
While ruling out programmed aging, evolutionary theory predicts a quasi-program for aging, a continuation of the developmental program that is not turned off, is constantly on, becoming hyper-functional and damaging, causing diseases of aging. Could it be switched off pharmacologically? This would require identification of a molecular target involved in(More)
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as 'accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with(More)
Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that(More)
It is widely believed that aging is caused by the accumulation of random molecular damage due to reactive oxygen species (ROS). Here I discuss evidence for and against the ROS theory. Remarkably, even supporting evidence has an alternative explanation, consistent with the model that aging is driven by the TOR (target of rapamycin) signaling pathway.
Recent studies have shown that paclitaxel leads to activation of Raf-1 kinase and have suggested that this activation is essential for bcl-2 phosphorylation and apoptosis. In the present study, we demonstrate that, in addition to paclitaxel, other agents that interact with tubulin and microtubules also induce Raf-1/bcl-2 phosphorylation, whereas(More)
Cytosolic Raf-1 exists in a high molecular weight complex with the heat shock protein Hsp90, the purpose of which is unknown. The benzoquinone ansamycin, geldanamycin, specifically binds to Hsp90 and disrupts certain multimolecular complexes containing this protein. Using this drug, we are able to demonstrate rapid dissociation of both Raf-1-Hsp90 and(More)
We tested a hypothesis that activation of growth-promoting pathways is required for cellular senescence. In the presence of serum, induction of p21 caused senescence, characterized by beta-Galactosidase staining, cell hypertrophy, increased levels of cyclin D1 and active TOR (target of rapamycin, also known as mTOR). Serum starvation and rapamycin inhibited(More)
Although hypoxia (lack of oxygen in body tissues) is perhaps the most physiological inducer of the wild-type p53 gene, the mechanism of this induction is unknown. Cells may detect low oxygen levels through a haem-containing sensor protein. The hypoxic state can be mimicked by using cobalt chloride and the iron chelator desferrioxamine: like hypoxia, cobalt(More)