Mikhail I Rudenko

Learn More
We present a fully planar integrated optofluidic platform that permits single particle detection, manipulation and analysis on a chip. Liquid-core optical waveguides guide both light and fluids in the same volume. They are integrated with fluidic reservoirs and solid-core optical waveguides to define sub-picoliter excitation volumes and collect the optical(More)
We demonstrate detection and analysis of the Qbeta bacteriophage on the single virus level using an integrated optofluidic biosensor. Individual Qbeta phages with masses on the order of attograms were sensed and analyzed on a silicon chip in their natural liquid environment without the need for virus immobilization. The diffusion coefficient of the viruses(More)
Fluorescence cross-correlation spectroscopy (FCCS) is a highly sensitive fluorescence technique with distinct advantages in many bioanalytical applications involving interaction and binding of multiple components. Due to the use of multiple beams, bulk optical FCCS setups require delicate and complex alignment procedures. We demonstrate the first(More)
We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN(More)
We describe analysis and control of 50S ribosomal subunits by a solid-state 45nm diameter nanopore incorporated in a microfluidic chip. When used as a resistive pulse sensor, translocation of single 50S subunits through the nanopore produces current blockades that have a linear dependence on applied voltage. Introduction of individual subunits into the(More)