Mikhail Fonin

Learn More
Magnetic domains and domain walls in epitaxial Fe3O4(100) elements (rings and wires) are imaged using magnetic force microscopy and photoemission electron microscopy. We show that the interplay between the four-fold magnetocrystalline anisotropy and the shape determines the equilibrium domain structure. Domain walls with a characteristic zig-zag structure(More)
We report on angle-resolved photoemission studies of the electronic pi states of high-quality epitaxial graphene layers on a Ni(111) surface. In this system the electron binding energy of the pi states shows a strong dependence on the magnetization reversal of the Ni film. The observed extraordinarily large energy shift up to 225 meV of the graphene-derived(More)
We present a detailed study of the spin-dependent electronic structure of thin epitaxial magnetite films of different crystallographic orientations. Using spin- and angle-resolved photoelectron spectroscopy at room temperature, we determine for epitaxial Fe(3)O(4)(111) films a maximum spin polarization value of -(80 ± 5)% near E(F). The spin-resolved(More)
Realization of graphene moiré superstructures on the surface of 4d and 5d transition metals offers templates with periodically modulated electron density, which is responsible for a number of fascinating effects, including the formation of quantum dots and the site selective adsorption of organic molecules or metal clusters on graphene. Here, applying the(More)
We use in situ scanning tunneling microscopy (STM) to investigate intercalation of the ferromagnetic 3d metals Ni and Fe underneath a graphene monolayer on Rh(111). Upon thermal annealing of graphene/Rh(111) with the deposited metal on top, we observe the formation of epitaxial monatomic nanoislands grown pseudomorphically on Rh(111) and covered by(More)
We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene(More)
Addressing the multitude of electronic phenomena theoretically predicted for confined graphene structures requires appropriate in situ fabrication procedures yielding graphene nanoflakes (GNFs) with well-defined geometries and accessible electronic properties. Here, we present a simple strategy to fabricate quasi-free-standing GNFs of variable sizes,(More)
We report an element-specific investigation of electronic and magnetic properties of the graphene/Ni(111) system. Using x-ray magnetic circular dichroism, the occurrence of an induced magnetism of the carbon atoms in the graphene layer is observed. We attribute this magnetic moment to the strong hybridization between C π and Ni 3d valence band states. The(More)