Mikhail E. Belov

Learn More
MOTIVATION Ion mobility spectrometry (IMS) has gained significant traction over the past few years for rapid, high-resolution separations of analytes based upon gas-phase ion structure, with significant potential impacts in the field of proteomic analysis. IMS coupled with mass spectrometry (MS) affords multiple improvements over traditional proteomics(More)
Data-dependent external m/z selection and accumulation of ions is demonstrated in use with ESI-FTICR instrumentation, with two different methods for ion selection being explored. One method uses RF/DC quadrupole filtering and is described in use with an 11.5 tesla (T) FTICR instrument, while the second method employs RF-only resonance dipolar excitation(More)
Small molecules are known to stabilize membrane proteins and to modulate their function and oligomeric state, but such interactions are often hard to precisely define. Here we develop and apply a high-resolution, Orbitrap mass spectrometry-based method for analyzing intact membrane protein-ligand complexes. Using this platform, we resolve the complexity of(More)
Efforts to map the human protein interactome have resulted in information about thousands of multi-protein assemblies housed in public repositories, but the molecular characterization and stoichiometry of their protein subunits remains largely unknown. Here, we report a computational search strategy that supports hierarchical top-down analysis for precise(More)
We have designed and implemented a Cray XD 1-based simulation of data capture and signal processing for an advanced Ion Mobility mass spectrometer (Hadamard transform Ion Mobility). Our simulation is a hybrid application that uses both an FPGA component and a CPU-based software component to simulate Ion Mobility mass spectrometry data processing. The FPGA(More)
  • 1