Mike Slomczykowski

Learn More
Intraoperative freehand three-dimensional (3-D) ultrasound (3D-US) has been proposed as a noninvasive method for registering bones to a preoperative computed tomography image or computer-generated bone model during computer-aided orthopedic surgery (CAOS). In this technique, an US probe is tracked by a 3-D position sensor and acts as a percutaneous device(More)
The objective of this research was to determine whether a fast 3-dimensional (3-D) gradient echo magnetic resonance imaging (MRI) sequence could be used to acquire images suitable for image guided surgery of the spine. The main difficulty with MRI is that inhomogeneities in the static magnetic field lead to geometric distortions in the images. We used a(More)
Statistical shape modelling potentially provides a powerful tool for generating patient-specific, 3D representations of bony anatomy for computer-aided orthopaedic surgery (CAOS) without the need for a preoperative CT scan. Furthermore, freehand 3D ultrasound (US) provides a non-invasive method for digitising bone surfaces in the operating theatre that(More)
A method is presented for the rigid registration of tracked B-mode ultrasound images to a CT volume of a femur and pelvis. This registration can allow tracked surgical instruments to be aligned with the CT image or an associated preoperative plan. Our method is fully automatic and requires no manual segmentation of either the ultrasound images or the CT(More)
A method to accurately measure the position and orientation of an acetabular cup implant from postoperative X-rays has been designed and validated. The method uses 2-D-3-D registration to align both the prosthesis and the preoperative computed tomography (CT) volume to the X-ray image. This allows the position of the implant to be calculated with respect to(More)
We describe a new self-calibrating approach to rigid registration of 3D ultrasound images in which in vivo data acquired for registration are used to simultaneously perform a patient-specific update of the calibration parameters of the 3D ultrasound system. Using a self-calibrating implementation of a point-based registration algorithm, and points obtained(More)
  • 1