Learn More
Age-related macular degeneration (AMD) is the leading cause of blind registration in the developed world, and yet its pathogenesis remains poorly understood. Oxidative stress, which refers to cellular damage caused by reactive oxygen intermediates (ROI), has been implicated in many disease processes, especially age-related disorders. ROIs include free(More)
PURPOSE Age and advanced disease in the fellow eye are the two most important risk factors for age-related macular degeneration (AMD). In this study, the authors investigated the relationship between these variables and the optical density of macular pigment (MP) in a group of subjects from a northern European population. METHODS The optical density of MP(More)
The present concepts of the pathogenesis of AMD include cumulative light damage by oxidative processes in the macular photoreceptors as environmental co-factor for the development of AMD. The direct causative connection of this hypothesis has still to be established but wide circumstantial evidence from epidemiological and basic scientific investigations(More)
Pigment epithelium-derived factor (PEDF) has been identified as one of the most potent of endogenous negative regulators of blood vessel growth in the body. Here we report that PEDF is able to inhibit growth factor-induced angiogenesis in microvascular endothelial cells through a novel pathway requiring cleavage and intracellular translocation of the(More)
This article provides current information on the potential role of oxidation in relation to age-related macular degeneration (AMD). The emphasis is placed on the generation of oxidants and free radicals and the protective effects of antioxidants in the outer retina, with specific emphasis on the photoreceptor cells, the retinal pigment epithelium and the(More)
Exposure of biological chromophores to ultraviolet radiation can lead to photochemical damage. However, the role of visible light, particularly in the blue region of the spectrum, has been largely ignored. To test the hypothesis that blue light is toxic to non-pigmented epithelial cells, confluent cultures of human primary retinal epithelial cells were(More)
OPA1 is a ubiquitously expressed, nuclear dynamin-related GTPase, targeted to the inner mitochondrial membrane, which plays a role in mitochondrial fusion. Mutations in the OPA1 gene on chromosome 3q28-qter are associated with autosomal dominant optic atrophy (ADOA), the most common inherited optic neuropathy, in which retinal ganglion cells (RGCs) are lost(More)
Identifying the mechanisms determining species-specific life spans is a central challenge in understanding the biology of aging. Cellular stresses produce damage, that may accumulate and cause aging. Evolution theory predicts that long-lived species secure their longevity through investment in a more durable soma, including enhanced cellular resistance to(More)
Emerging evidence indicates that the autofluorescent pigments that accumulate as lipofuscin in retinal pigment epithelial (RPE) cells may reach levels that contribute to a decline in cell function. Since recent findings with respect to the origin, composition and adverse effects of RPE lipofuscin have informed our view of this material, the goal of this(More)