Learn More
Rat and human pancreatic duct cells have small-conductance Cl- channels in their apical plasma membranes. These channels are regulated by secretin and adenosine 3',5'-cyclic monophosphate and may function in parallel with Cl(-)-HCO3- exchangers to allow HCO3- secretion from the duct cell. Using the patch-clamp technique, we have now determined the anion(More)
Using the patch-clamp technique, we have identified two types of chloride channel on duct cells cultured from human fetal pancreas. The channel we observed most frequently exhibited slight outward rectification, had a conductance of 4-7 pS in cell-attached patches, and was present on the apical plasma membrane where it usually occurred in clusters. Its(More)
Using the whole cell configuration of the patch-clamp technique, we have identified an adenosine 3',5'-cyclic monophosphate (cAMP)-regulated chloride conductance in pancreatic duct cells. Basal whole cell currents in single isolated cells were very low (approximately 5 pA/pF) but could be stimulated 17-fold by elevation of intracellular cAMP. The(More)
We have studied the cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride currents in pancreatic duct cells isolated from a transgenic cf/cf mouse created by targeted insertional mutagenesis. Adenosine 3',5'-cyclic monophosphate (cAMP)-activated CFTR chloride currents were detected in 78% (29/37) of wild-type cells, in(More)
1. The nature of Cl- conductance(s) participating in transepithelial anion secretion by renal inner medullary collecting duct (IMCD, mIMCD-K2 cell line) was investigated. 2. Extracellular ATP (100 microM) stimulated a transient increase in both whole-cell Cl- conductance and intracellular free Ca2+. In contrast, ionomycin (10-100 nM) caused a sustained(More)
Chloride channels play an important role in the physiology and pathophysiology of epithelia, but their pharmacology is still poorly developed. We have chemically synthesized a series of substituted benzo[c]quinolizinium (MPB) compounds. Among them, 6-hydroxy-7-chlorobenzo[c]quinolizinium (MPB-27) and 6-hydroxy-10-chlorobenzo[c]quinolizinium (MPB-07), which(More)
We have identified a non-selective cation channel on pancreatic duct cells. These epithelial cells secrete the bicarbonate ions found in pancreatic juice; a process controlled by the hormone secretin, which uses cyclic AMP as an intracellular messenger. The non-selective channel is located on both apical and basolateral plasma membranes of the duct cell, is(More)
The mechanism by which bradykinin regulates renal epithelial salt transport has been investigated using a mouse inner medullary renal collecting duct cell-line mIMCD-K2. Using fura-2 loaded mIMCD-K2 cells bradykinin (100 nM) has been shown to induce a transient increase in intracellular Ca(2+) via activation of bradykinin B2 receptors localized to both the(More)
BHK-21 cells showed an increased ability to concentrate 2-deoxy-D-glucose (dGlc) 2 to 3 h after infection with vesicular stomatitis virus (VSV) or Semliki Forest virus (SFV), which began to be released at 2 and 3 h post-infection respectively; uptake of other nutrients was not affected in this way. Intracellular Na+ was either unchanged (VSV-infected cells)(More)
A number of genetic diseases, including cystic fibrosis, have been identified as disorders of protein trafficking associated with retention of mutant protein within the endoplasmic reticulum. In the presence of the benzo(c)quinolizinium drugs, MPB-07 and its congener MPB-91, we show the activation of cystic fibrosis transmembrane conductance regulator(More)