Mikael U Winters

Learn More
Electron transfer over long distances is important for many future applications in molecular electronics and solar energy harvesting. In these contexts, it is of great interest to find molecular systems that are able to efficiently mediate electrons in a controlled manner over nanometer distances, that is, structures that function as molecular wires. Here(More)
A donor-acceptor system is presented in which the electron-transfer rates can be sensitively controlled by means of excitation wavelength and temperature. The electron donor is a butadiyne-linked zinc porphyrin dimer that is connected to a C(60) electron acceptor. The broad distribution of conformations allowed by the butadiyne linker makes it possible to(More)
We report a systematic study of the photophysical parameters relevant to photodynamic therapy (PDT) by a new type of sensitizers, conjugated porphyrin oligomers. Due to the strong nonlinear properties of oligomers containing 2, 4 and 8 porphyrin units, these molecules are attractive candidates for PDT via multiphoton excitation. The triplet state energy(More)
Electron and energy transfer reactions in covalently connected donor-bridge-acceptor assemblies are strongly dependent, not only on the donor-acceptor distance, but also on the electronic structure of the bridge. In this article we describe some well characterised systems where the bridges are pi-conjugated chromophores, and where, specifically, the(More)
The temperature- and solvent-dependence of photoinduced electron-transfer reactions in a porphyrin-based donor-bridge-acceptor (DBA) system is studied by fluorescence and transient absorption spectroscopy. Two competing processes occur: sequential and direct superexchange-mediated electron transfer. In a weakly polar solvent (2-methyltetrahydrofuran), only(More)
The DNA binding conformation and the photophysical properties of the semiflexible binuclear ruthenium complex [micro-bidppz(phen)4Ru2]4+ (2) were studied with optical spectroscopy and compared to the rigid, planar homologue in syn conformation [micro-dtpf(phen)4Ru2]4+ (3) and the parent "light-switch" complex [Ru(phen)2dppz]2+ (1). Comparison of calculated(More)
  • 1