Learn More
The intercellular transfer of misfolded proteins has received increasing attention in various neurodegenerative diseases characterized by the aggregation of specific proteins, as observed in Alzheimer’s, Parkinson’s and Huntington’s disease. One hypothesis holds that intercellular dissemination of these aggregates within the central nervous system results(More)
Intraluminal vesicles of multivesicular endosomes are either sorted for cargo degradation into lysosomes or secreted as exosomes into the extracellular milieu. The mechanisms underlying the sorting of membrane into the different populations of intraluminal vesicles are unknown. Here, we find that cargo is segregated into distinct subdomains on the endosomal(More)
The amyloid precursor protein (APP) plays a crucial role in the pathogenesis of Alzheimer's disease. During intracellular transport APP undergoes a series of proteolytic cleavages that lead to the release either of an amyloidogenic fragment called beta-amyloid (Abeta) or of a nonamyloidogenic secreted form consisting of the ectodomain of APP (APPsec). It is(More)
Myelin is a specialized membrane enriched in glycosphingolipids and cholesterol that contains a limited spectrum of proteins. We investigated the assembly of myelin components by oligodendrocytes and analyzed the role of lipid-protein interactions in this process. Proteolipid protein (PLP), the major myelin protein, was recovered from cultured(More)
Central nervous system myelin is a multilayered membrane sheath generated by oligodendrocytes for rapid impulse propagation. However, the underlying mechanisms of myelin wrapping have remained unclear. Using an integrative approach of live imaging, electron microscopy, and genetics, we show that new myelin membranes are incorporated adjacent to the axon at(More)
Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated(More)
In a randomized, placebo-controlled, double-blind study, we investigated whether statins alter cholesterol metabolites and reduce Abeta levels in the cerebrospinal fluid of 44 patients with Alzheimer's disease. Individuals were given up to 80mg simvastatin daily or placebo for 26 weeks. Overall, simvastatin did not significantly alter cerebrospinal fluid(More)
A characteristic neuropathological feature of Alzheimer's disease is the cerebral deposition of amyloid plaques. These deposits contain beta A4 amyloid peptide, a cleavage product of the transmembrane protein amyloid protein precursor (APP). Despite numerous studies on the processing of the different APP isoforms in non-neuronal cells, little is known about(More)
Glial dysfunction has been implicated in a number of neurodegenerative diseases. In this study we investigated the consequences of glial and oligodendrocyte ablation on neuronal integrity and survival in Drosophila and adult mice, respectively. Targeted genetic ablation of glia was achieved in the adult Drosophila nervous system using the GAL80-GAL4 system.(More)
We have analysed the axonal sorting signals of amyloid precursor protein (APP). Wild-type and mutant versions of human APP were expressed in hippocampal neurons using the Semliki forest virus system. We show that wild-type APP and mutations implicated in Alzheimer's disease and another brain beta-amyloidosis are sorted to the axon. By analysis of deletion(More)