Mikael Marttinen

Learn More
Cognitive decline and disease progression in different neurodegenerative diseases typically involves synaptic dysfunction preceding the neuronal loss. The synaptic dysfunction is suggested to be caused by imbalanced synaptic plasticity i.e. enhanced induction of long-term depression and concomitantly decreased long-term potentiation accompanied with excess(More)
Accumulation of β-amyloid (Aβ) and phosphorylated tau in the brain are central events underlying Alzheimer's disease (AD) pathogenesis. Aβ is generated from amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase-mediated cleavages. Ubiquilin-1, a ubiquitin-like protein, genetically associates with AD and affects APP(More)
Dysfunction and loss of synapses are early pathogenic events in Alzheimer's disease. A central step in the generation of toxic amyloid-β (Aβ) peptides is the cleavage of amyloid precursor protein (APP) by β-site APP-cleaving enzyme (BACE1). Here, we have elucidated whether downregulation of septin (SEPT) protein family members, which are implicated in(More)
The agonist-induced activation of human δ-opioid receptor (δOR) has been shown to increase β- (BACE1) and γ-secretase activities leading to increased production of amyloid-β (Aβ) peptide. We have recently shown that phenylalanine to cysteine substitution at amino acid 27 in δOR (δOR-Phe27Cys) increases amyloid-β protein precursor processing through altered(More)
  • 1