Mika Olsen

  • Citations Per Year
Learn More
In this paper, we construct infinite families of tight regular tournaments. In particular, we prove that two classes of regular tournaments, tame molds and ample tournaments are tight. We exhibit an infinite family of 3-dichromatic tight tournaments. With this family we positively answer to one case of a conjecture posed by V. Neumann-Lara. Finally, we show(More)
In this paper we exhibit infinite families of vertex critical r-dichromatic circulant tournaments for all r ≥ 3. The existence of these infinite families was conjectured by NeumannLara (7), who later proved it for all r ≥ 3 and r 6= 7. Using different methods we find explicit constructions of these infinite families for all r ≥ 3, including the case when r(More)
In this talk we expose the results about infinite families of vertex critical r-dichromatic circulant tournaments for all r ≥ 3. The existence of these infinite families was conjectured by Neumann-Lara [6], who later proved it for all r ≥ 3 and r = 7. Using different methods we find explicit constructions of these infinite families for all r ≥ 3, including(More)