Learn More
Epigenetic regulation including DNA methylation plays an important role in several differentiation processes. We profiled global DNA methylation in the neural differentiation of P19 embryonic carcinoma cells using a microarray-based method called MIAMI. We found a genome-wide demethylation of genes. This suggests demethylation rather than methylation is(More)
Both fragile X syndrome and Rett syndrome are commonly associated with autism spectrum disorders and involve defects in synaptic plasticity. MicroRNA is implicated in synaptic plasticity because fragile X mental retardation protein was recently linked to the microRNA pathway. DNA methylation is also involved in synaptic plasticity since methyl CpG-binding(More)
Epigenetic changes are thought to lead to alterations in the property of cells, such as differentiation potential. Neural precursor cells (NPCs) differentiate only into neurons in the midgestational brain, yet they become able to generate astrocytes in the late stage of development. This differentiation-potential switch could be explained by epigenetic(More)
The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal(More)
Members of the microRNA-29 (miR-29) family directly target the DNA methyltransferases, DNMT3A and DNMT3B. Disturbances in the expression levels of miR-29 have been linked to tumorigenesis and tumor aggressiveness. Members of the miR-29 family are currently thought to repress DNA methylation and suppress tumorigenesis by protecting against de novo(More)
To elucidate the epigenetic role of RNAi in mammals, we disrupted the gene for Eif2c2 (Ago2), which works as the sole slicer of RNAi in the Argonaute family. In mice, disruption of Eif2c2 leads to embryonic lethality early in development after the implantation stage. This phenotype is completely different from that in a previous report, but somewhat similar(More)
Dicer1, an essential component of RNA interference and the microRNA pathway, has many important roles in the morphogenesis of developing tissues. Dicer1 null mice have been reported to die at E7.5; therefore it is impossible to study its function in adult tissues. We previously reported that Dicer1-hypomorphic mice, whose Dicer1 expression was reduced to(More)
The CRISPR/Cas system, in which the Cas9 endonuclease and a guide RNA complementary to the target are sufficient for RNA-guided cleavage of the target DNA, is a powerful new approach recently developed for targeted gene disruption in various animal models. However, there is little verification of microinjection methods for generating knockout mice using(More)
Haploid embryonic stem cells (ESCs) are useful for studying mammalian genes because disruption of only one allele can cause loss-of-function phenotypes. Here, we report the use of haploid ESCs and the CRISPR RNA-guided Cas9 nuclease gene-targeting system to manipulate mammalian genes. Co-transfection of haploid ESCs with vectors expressing Cas9 nuclease and(More)
Aberrant DNA methylation is an important event in carcinogenesis. Of the various regions of a gene that can be methylated in cancers, the promoter is the most important for the regulation of gene expression. Here, we describe a microarray analysis of DNA methylation in the promoter regions of genes using a newly developed promoter-associated methylated DNA(More)