Miin-Jang Chen

  • Citations Per Year
Learn More
ZnO nanowire (NW) UV photodetectors (PDs) have high sensitivity, while their long recovery time is an important limitation for practical applications. We demonstrated that the recovery time of nanostructured ZnO PDs can be significantly improved using the nanobelt (NB) network. The NB-network PDs are fabricated by only one step without tedious and costly(More)
The corresponding energy landscape and surface potential are deduced from the experimental ferroelectricity of HfZrO<sub>2</sub> (HZO) for low-power steep-slope transistor applications. The anti-ferroelectric (AFE) in annealed 600&#x00B0;C HZO extracted electrostatic potential gain from the measured polarization hysteresis loop and calculated subthreshold(More)
Efficient nanotextured black silicon solar cells passivated by an Al2O3 layer are demonstrated. The broadband antireflection of the nanotextured black silicon solar cells was provided by fabricating vertically aligned silicon nanowire (SiNW) arrays on the n(+) emitter. A highly conformal Al2O3 layer was deposited upon the SiNW arrays by the thermal atomic(More)
High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density(More)
In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead(More)
With the insertion of SiO(2) nanoparticles in the oxide layer, near-lasing actions such as threshold behavior and resonance modes are observed at the Si bandgap energy of metal-oxide-silicon (MOS) structure. The threshold current is ~12 mA . The SiO(2) nanoparticles cause simultaneous localization of electrons and holes to enhance phonon-assisted radiative(More)
Si nanocrystals embedded in a SiO2 matrix and an n-type Al-doped ZnO (ZnO:Al) layer were applied to improve the external quantum efficiency from Si in n- ZnO/SiO2-Si nanocrystals-SiO2/p-Si heterojunction light-emitting diodes (LEDs). The Si nanocrystals were grown by low pressure chemical vapor deposition and the ZnO:Al layer was prepared by atomic layer(More)
Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and(More)
We report on the characteristics of near-band-edge (NBE) emission and deep-level band from ZnO/Al2O3 and ZnO/ZnO core-shell nanorod arrays (NRAs). Vertically aligned ZnO NRAs were synthesized by an aqueous chemical method, and the Al2O3 and ZnO shell layers were prepared by the highly conformal atomic layer deposition technique. Photoluminescence(More)
The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH3. The increase in the growth temperature leads(More)