Mihrimah Ozkan

Learn More
We demonstrate the use of surface Zeta potential measurements as a new tool to investigate the interactions of iron oxide nanoparticles and cowpea mosaic virus (CPMV) nanoparticles with human normal breast epithelial cells (MCF10A) and cancer breast epithelial cells (MCF7) respectively. A substantial understanding in the interaction of nanoparticles with(More)
Nanocrystals (quantum dots) and other nanoparticles (gold colloids, magnetic bars, nanobars, dendrimers and nanoshells) have been receiving a lot of attention recently with their unique properties for potential use in drug discovery, bioengineering and therapeutics. In this review, structural, optical and biological assets of nanocrystals are summarized and(More)
Experimental investigations into the dynamics of neuronal networks are a fundamental step towards understanding how the nervous system works. Memory formation and development are associated with changes in the electrical activity of the neurons. To understand the changes in the electrical activity, it is essential to conduct in vitro studies on individual(More)
UNLABELLED Nanoparticles (NPs) are attractive carriers for vaccines. We have previously shown that a short peptide (Hp91) activates dendritic cells (DCs), which are critical for initiation of immune responses. In an effort to develop Hp91 as a vaccine adjuvant with NP carriers, we evaluated its activity when encapsulated in or conjugated to the surface of(More)
Viruses are exemplary models in nanoassembly for their regular geometries, well characterized surface properties, and nanoscale dimensions. Armed with versatile tools aimed at site-directed mutagenesis to modify the virion's surface, conjugation chemistry for capsid coupling, and manipulation of nanoparticles, we have demonstrated nanoscale assembly of(More)
In this work, the synthesis and characterization of three-dimensional hetergeneous graphene nanostructures (HGN) comprising continuous large-area graphene layers and ZnO nanostructures, fabricated via chemical vapor deposition, are reported. Characterization of large-area HGN demonstrates that it consists of 1-5 layers of graphene, and exhibits high optical(More)
Magnetic force microscopy has the capability to detect magnetic domains from a close distance, which can provide the magnetic force gradient image of the scanned samples and also simultaneously obtain atomic force microscope (AFM) topography image as well as AFM phase image. In this work, we demonstrate the use of magnetic force microscopy together with AFM(More)
A single neuron sensor has been developed based on the interaction of gradient electric fields and the cell membrane. Single neurons are rapidly positioned over individual microelectrodes using positive dielectrophoretic traps. This enables the continuous extracellular electrophysiological measurements from individual neurons. The sensor developed using(More)
We present a novel sensing scheme for detecting the effects of unburned fossil fuels by integrating microarray technology and dielectrophoresis to develop single-neuron arrays. These arrays have the capability to sense and identify the two fuels, at parts per billion (ppb) concentrations, as well to determine the associated physiological changes at the(More)