Miho Matsuda

Learn More
Snail is a transcription repressor that plays a central role in the epithelium-mesenchyme transition (EMT), by which epithelial cells lose their polarity. Claudins and occludin are integral membrane proteins localized at tight junctions, which are responsible for establishing and maintaining epithelial cell polarity. We examined the relationship between(More)
It has been reported that inositol hexakisphosphate (InsP(6), phytic acid), a natural product, has an anticancer role. However, there is inadequate information regarding the mechanism by which InsP(6) exerts anticancer actions, and the effect requires relatively high concentration of the agent, both of which hinders the usage of InsP(6) as an anticancer(More)
The posterior lateral line primordium (PLLp) migrates caudally and periodically deposits neuromasts. Coupled, but mutually inhibitory, Wnt-FGF signaling systems regulate proto-neuromast formation in the PLLp: FGF ligands expressed in response to Wnt signaling activate FGF receptors and initiate proto-neuromast formation. FGF receptor signaling, in turn,(More)
The uncarboxylated form (ucOC), but not the γ-carboxylated form (GlaOC), of the bone-derived protein osteocalcin stimulates insulin secretion and regulates energy metabolism in insulin target tissues. Glucagon-like peptide-1 (GLP-1) is an insulin secretagogue that is released from the gut in response to food intake. We have now found that Gprc6a, a putative(More)
Tight junctions (TJs) seal the intercellular space of epithelial cells, while individual epithelial cells move against adjacent cells in cellular sheets. To observe TJs in live epithelial cellular sheets, green fluorescent protein (GFP) was fused to the N-terminus of claudin-3 (a major cell adhesion molecule of TJs), which was stably expressed at a level(More)
The posterior lateral line (pLL) in zebrafish has emerged as an excellent system to study how a sensory organ system develops. Here we review recent studies that illustrate how interactions between multiple signaling pathways coordinate cell fate,morphogenesis, and collective migration of cells in the posterior lateral line primordium. These studies also(More)
The posterior lateral line primordium (pLLp) migrates caudally, depositing neuromasts to establish the posterior lateral line system in zebrafish. A Wnt-dependent FGF signaling center at the leading end of the pLLp initiates the formation of `proneuromasts' by facilitating the reorganization of cells into epithelial rosettes and by initiating atoh1a(More)
The translocation of fluorescently tagged PLC g and requirements for this process in cells stimulated with EGF were analyzed using real time fluorescence microscopy applied for the first time to monitor growth factor receptor–effector interactions. The translocation of PLC g to the plasma membrane required the functional Src homology 2 domains and was not(More)
Collective migration of cells in the zebrafish posterior lateral line primordium (PLLp) along a path defined by Cxcl12a expression depends on Cxcr4b receptors in leading cells and on Cxcr7b in trailing cells. Cxcr7b-mediated degradation of Cxcl12a by trailing cells generates a local gradient of Cxcl12a that guides PLLp migration. Agent-based computer models(More)
A soluble phospholipase C (PLC) from boar sperm generates InsP(3) and hence causes Ca(2+) release when added to sea urchin egg homogenate. This PLC activity is associated with the ability of sperm extracts to cause Ca(2+) oscillations in mammalian eggs following fractionation. A sperm PLC may, therefore, be responsible for causing the observed Ca(2+)(More)