#### Filter Results:

#### Publication Year

2002

2008

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Mihai Badoiu, Sariel Har-Peled, Piotr Indyk
- STOC
- 2002

In this paper, we show that for several clustering problems one can extract a small set of points, so that using those <i>core-sets</i> enable us to perform approximate clustering efficiently. The surprising property of those core-sets is that their size is independent of the dimension.Using those, we present a (1+ ε)-approximation algorithms for the… (More)

- Mihai Badoiu, Kenneth L. Clarkson
- SODA
- 2003

Given a set of points <i>P</i> ⊂ <i>R</i><sup><i>d</i></sup> and value ∊ > 0, an ∊-core-set <i>S</i> ⊂ <i>P</i> has the property that the smallest ball containing <i>S</i> is an ∊-approximation of the smallest ball containing <i>P</i>. This paper shows that any point-set has an ∊-core-set of size [2/∊]. We also give… (More)

- Mihai Badoiu, Kenneth L. Clarkson
- Comput. Geom.
- 2008

Given a set of points P ⊂ R d and value > 0, an-core-set S ⊂ P has the property that the smallest ball containing S is within of the smallest ball containing P. This paper shows that any point set has an-core-set of size 1//, and this bound is tight in the worst case. A faster algorithm given here finds an-core-set of size at most 2//. These results imply… (More)

A low-distortion embedding between two metric spaces is a mapping which preserves the distances between each pair of points, up to a small factor called distortion. Low-distortion embeddings have recently found numerous applications in computer science.Most of the known embedding results are "absolute",that is, of the form: any metric <i>Y</i> from a given… (More)

- Mihai Badoiu, Richard Cole, Erik D. Demaine, John Iacono
- Theor. Comput. Sci.
- 2007

We present a dynamic comparison-based search structure that supports insertions, deletions, and searches within the unified bound. The unified bound specifies that it is quick to access an element that is near a recently accessed element. More precisely, if w(y) distinct elements have been accessed since the last access to element y, and d(x, y) denotes the… (More)

- Mihai Badoiu, Kedar Dhamdhere, +4 authors Anastasios Sidiropoulos
- SODA
- 2005

We present several approximation algorithms for the problem of embedding metric spaces into a line, and into the two-dimensional plane. Among other results, we give an <i>O</i>(√<i>n</i>)-approximation algorithm for the problem of finding a line embedding of a metric induced by a given unweighted graph, that minimizes the (standard) multiplicative… (More)

The provenance of a file represents the origin and history of the file data. A Distributed Provenance Aware Storage System (DPASS) tracks the provenance of files in a distributed file system. The provenance information can be used to identify potential dependencies between files in a filesystem. Some applications of provenance tracking include (i) tracking… (More)

- Mihai Badoiu, Erik D. Demaine, Mohammad Taghi Hajiaghayi, Piotr Indyk
- Discrete & Computational Geometry
- 2004

A frequently arising problem in computational geometry is when a physical structure, such as an ad-hoc wireless sensor network or a protein backbone, can measure local information about its geometry (e.g., distances, angles, and/or orientations), and the goal is to reconstruct the global geometry from this partial information. More precisely, we are given a… (More)

- Mihai Badoiu, Artur Czumaj, Piotr Indyk, Christian Sohler
- ICALP
- 2005

In this paper we present a randomized constant factor approximation algorithm for the problem of computing the optimal cost of the metric Minimum Facility Location problem, in the case of uniform costs and uniform demands, and in which every point can open a facility. By exploiting the fact that we are approximating the optimal cost without computing an… (More)

- Noga Alon, Mihai Badoiu, Erik D. Demaine, Martin Farach-Colton, Mohammad Taghi Hajiaghayi, Anastasios Sidiropoulos
- ACM Trans. Algorithms
- 2005

We introduce a new notion of embedding, called <i>minimum-relaxation ordinal embedding</i>, parallel to the standard notion of minimum-distortion (metric) embedding. In an ordinal embedding, it is the relative order between pairs of distances, and not the distances themselves, that must be preserved as much as possible. The (multiplicative) relaxation of an… (More)