Mihaela van der Schaar

Learn More
Real-time streaming of audiovisual content over the Internet is emerging as an important technology area in multimedia communications. Due to the wide variation of available bandwidth over Internet sessions, there is a need for scalable video coding methods and (corresponding) flexible streaming approaches that are capable of adapting to changing network(More)
Wireless networks are poised to enable a variety of existing and emerging multimedia streaming applications. As the use of wireless local area networks spreads beyond simple data transfer to bandwidth-intense, delay-sensitive, and loss-tolerant multimedia applications, addressing quality of service issues will become extremely important. Currently, a(More)
Multiuser multimedia applications such as enterprise streaming, surveillance, and gaming are recently emerging, and they are often deployed over bandwidth-constrained network infrastructures. To ensure the quality of service (QoS) required by the delay-sensitive and bandwidth intensive multimedia data for these applications, efficient resource (bandwidth)(More)
Robust streaming of video over 802.11 wireless local area networks poses many challenges, including coping with bandwidth variations, data losses, and heterogeneity of the receivers. Currently, each network layer (including physical layer, media access control (MAC), transport, and application layers) provides a separate solution to these challenges by(More)
Robust streaming of video over 802.11 wireless LANs (WLANs) poses many challenges, including coping with packets losses caused by network buffer overflow or link erasures. In this paper, we propose a novel error protection method that can provide adaptive quality-of-service (QoS) to layered coded video by utilizing priority queueing at the network layer and(More)
In this paper, we propose a dynamic channel-selection solution for autonomous wireless users transmitting delay-sensitive multimedia applications over cognitive radio networks. Unlike prior works that seldom consider the requirement of the application layer, our solution explicitly considers various rate requirements and delay deadlines of heterogeneous(More)
Several embedded video coding schemes have been recently developed for multimedia streaming over IP. In particular, fine-granular-scalability (FGS) video coding has been recently adopted by the MPEG-4 standard as the core video-compression method for streaming applications. From its inception, the FGS scalability structure was designed to be packet-loss(More)
The quality-of-service (QoS) guarantees enabled by the new IEEE 802.11 a/e Wireless LAN (WLAN) standard are specifically targeting the real-time transmission of multimedia content over the wireless medium. Since video data consume the largest part of the available bitrate compared to other media, optimization of video streaming for this new standard is a(More)
The proliferation of wireless multihop communication infrastructures in office or residential environments depends on their ability to support a variety of emerging applications requiring real-time video transmission between stations located across the network. We propose an integrated cross-layer optimization algorithm aimed at maximizing the decoded video(More)
Transmission of video over wireless and mobile networks requires a scalable solution that is capable of adapting to the varying channel conditions in real-time (bit-rate scalability). Furthermore, video content needs to be coded in a scalable fashion to match the capabilities of a variety of devices (complexity scalability). These two properties—bit rate(More)