Miguel X. Fernandes

Learn More
Hydrodynamic properties (translational diffusion, sedimentation coefficients and correlation times) of short B-DNA oligonucleotides are calculated from the atomic-level structure using a bead modeling procedure in which each non-hydrogen atom is represented by a bead. Using available experimental data of hydrodynamic properties for several oligonucleotides,(More)
In the absence of an experimentally solved structure, a homology model of a protein target can be used instead for virtual screening of drug candidates by docking and scoring. This approach poses a number of questions regarding the choice of the template to use in constructing the model, the accuracy of the screening results, and the importance of allowing(More)
The acquisition of drug-resistant mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors(More)
Standard uses of ligand-receptor docking typically focus on the association of candidate ligands with a single targeted receptor, but actual applications increasingly require comparisons across multiple receptors. This study demonstrates that comparative docking to multiple receptors can help to select homology models for virtual compound screening and to(More)
Research interests, facilities and expertise Our lab interests focus on fundamental mechanisms of MR/aldosterone tissue-specific effects and their importance towards an integrated understanding of aldosterone pathophysiology and pharmacological modulation of the system. To that end we investigate how post-translational modifications of MR and associated(More)
We simulate, by Brownian dynamics, the distribution, orientation and diffusion of a rigid molecule, represented as a dumbbell, with amphipathic nature, embedded in a model membrane. The significant features of a biological membrane are reproduced by means of a Maier-Saupe orienting potential, an enclosing potential and a lipophobic potential. We also(More)
This work focuses on the conformational and dynamic properties of the antimicrobial peptides (AMPs), BP100 and pepR, when confined within model membrane systems. Brownian dynamics (BD) simulations of a coarse-grained model of each respective peptide in an environment reproducing the phospholipid bilayer were carried out. Simple mean-field potentials were(More)
Artificial neural networks (ANNs) have several applications; one of them is the prediction of biological activity. Here, ANNs were applied to a set of 32 compounds with anticancer activity assayed experimentally against two cancer cell lines (A2780 and T-47D). Using training and test sets, the obtained correlation coefficients between experimental and(More)
Many important proteins contain multiple domains connected by flexible linkers. Inter-domain motion is suggested to play a key role in many processes involving molecular recognition. Heteronuclear NMR relaxation is sensitive to motions in the relevant time scales and could provide valuable information on the dynamics of multi-domain proteins. However, the(More)
  • 1