Miguel Reyes

Learn More
This paper summarizes the ChaLearn Looking at People 2014 challenge data and the results obtained by the participants. The competition was split into three independent tracks: human pose recovery from RGB data, action and interaction recognition from RGB data sequences, and multi-modal gesture recognition from RGB-Depth sequences. For all the tracks, the(More)
The recognition of continuous natural gestures is a complex and challenging problem due to the multi-modal nature of involved visual cues (e.g. fingers and lips movements, subtle facial expressions, body pose, etc.), as well as technical limitations such as spatial and temporal resolution and unreliable depth cues. In order to promote the research advance(More)
We present a gesture recognition approach for depth video data based on a novel Feature Weighting approach within the Dynamic Time Warping framework. Depth features from human joints are compared through video sequences using Dynamic Time Warping, and weights are assigned to features based on inter-intra class gesture variability. Feature Weighting in(More)
We organized a Grand Challenge and Workshop on Multi-Modal Gesture Recognition. <b>The MMGR Grand Challenge</b> focused on the recognition of continuous natural gestures from multi-modal data (including RGB, Depth, user mask, Skeletal model, and audio). We made available a large labeled video database of 13,858 gestures from a lexicon of 20 Italian gesture(More)
In this paper, we present a fully-automatic Spatio-Temporal GrabCut human segmentation methodology that combines tracking and segmentation. GrabCut initialization is performed by a HOG-based subject detection, face detection, and skin color model. Spatial information is included by Mean Shift clustering whereas temporal coherence is considered by the(More)
We present a generic framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs in depth maps. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term(More)
In this paper, we present a full-automatic Spatio-Temporal GrabCut human segmentation methodology. GrabCut initialization is performed by a HOG-based subject detection, face detection, and skin color model for seed initialization. Spatial information is included by means of Mean Shift clustering whereas temporal coherence is considered by the historical of(More)
The use of depth maps is of increasing interest after the advent of cheap multisensor devices based on structured light, such as Kinect. In this context, there is a strong need of powerful 3-D shape descriptors able to generate rich object representations. Although several 3-D descriptors have been already proposed in the literature, the research of(More)
We present a framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term in α − β swap(More)
We propose an automatic system for user identification and object recognition based on multi-modal RGB-Depth data analysis. We model a RGBD environment learning a pixel-based background Gaussian distribution. Then, user and object candidate regions are detected and recognized online using robust statistical approaches over RGBD descriptions. Finally, the(More)