Learn More
The challenge of predicting future values of a time series covers a variety of disciplines. The fundamental problem of selecting the order and identifying the time varying parameters of an autoregressive moving average model (ARMA) concerns many important fields of interest such as linear prediction, system identification and spectral analysis. Recent(More)
Traditionally, the autoregressive moving average (ARMA) model has been one of the most widely used linear models in time series prediction. Recent research activities in forecasting with artificial neural networks (ANNs) suggest that ANNs can be a promising alternative to the traditional ARMA structure. These linear models and ANNs are often compared with(More)
The European Space of Higher Education (ESHE) is a new conceptual formulation of the organization of teaching at the university, largely involving the development of new training models based on the individual student's work. In this context, the University of Granada has approved two plans of Educational Excellence to promote a culture of quality and(More)
In this paper we present an approximation method of surfaces by a new type of splines, which we call fairness bicubic splines, from a given Lagrangian data set. An approximating problem of surface is obtained by minimizing a quadratic functional in a parametric space of bicubic splines. The existence and uniqueness of this problem are shown as long as a(More)