Learn More
An increasing amount of information on the action of antimicrobial peptides (AMPs) at the molecular level has not yet been translated into a comprehensive understanding of effects in bacteria. Although some biophysical attributes of AMPs have been correlated with macroscopic features, the physiological relevance of other properties has not yet been(More)
Optical spectroscopies have been intensively used to determine partition coefficients by a plethora of methodologies. The present review is intended to give detailed and useful information for the determination of partition coefficients and addresses several relevant aspects, namely: (i) definition and calculation of the partition coefficient between(More)
Fluorescence spectroscopy (both steady-state and time-resolved) was used to study the fragment 579-601 of gp41 ectodomain (HIV-1), a highly conserved sequence and major epitope, regarding (1) structural information, (2) interaction with membrane model systems, and (3) location in the phospholipid bilayer. The peptide was characterized both in its monomeric(More)
BP100 (KKLFKKILKYL-NH(2)) is a short cecropin A-melittin hybrid peptide, obtained through a combinatorial chemistry approach, which is highly effective in inhibiting both the in vitro and in vivo growth of economically important plant pathogenic Gram-negatives. The intrinsic Tyr fluorescence of BP100 was taken advantage of to study the peptide's binding(More)
Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of α-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars(More)
Omiganan pentahydrochloride (ILRWPWWPWRRK-NH(2).5Cl) is an antimicrobial peptide currently in phase III clinical trials. This study aims to unravel the mechanism of action of this drug at the membrane level and address the eventual protective role of peptidoglycan in cell walls. The interaction of omiganan pentahydrochloride with bacterial and mammalian(More)
T-1249 is a HIV fusion inhibitor peptide under clinical trials. Its interaction with biological membrane models (large unilamellar vesicles) was studied using fluorescence spectroscopy. A gp41 peptide that includes one of the hydrophobic terminals of T-1249 was also studied. Both peptides partition extensively to liquid-crystalline POPC(More)
The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the gram-negative Escherichia coli bacterial envelope were explored.(More)
The pharmaceutical potential of natural analgesic peptides is mainly hampered by their inability to cross the blood-brain barrier, BBB. Increasing peptide-cell membrane affinity through drug design is a promising strategy to overcome this limitation. To address this challenge, we grafted ibuprofen (IBP), a nonsteroidal anti-inflammatory drug, to kyotorphin(More)
BP100 is a short cationic antimicrobial peptide with a mechanism of action dependent on peptide-lipid interactions and microbial surface charge neutralization. Although active against Gram-negative bacteria, BP100 is inactive against Gram-positive bacteria. In this study we report two newly designed BP100 analogues, RW-BP100 and R-BP100 that have the Tyr(More)