Learn More
We introduce a novel "sensation preserving" simplification algorithm for faster collision queries between two polyhedral objects in haptic rendering. Given a polyhedral model, we construct a multiresolution hierarchy using "filtered edge collapse", subject to constraints imposed by collision detection. The resulting hierarchy is then used to compute fast(More)
We present a novel algorithm for efficiently splitting deformable solids along arbitrary piecewise linear crack surfaces in cutting and fracture simulations. We propose the use of a meshless discretization of the deformation field, and a novel visibility graph for fast update of shape functions in meshless discretizations. We decompose the splitting(More)
This paper presents a novel method for real-time animation of highly-detailed facial expressions based on a multi-scale decomposition of facial geometry into <i>large-scale motion</i> and <i>fine-scale details</i>, such as expression wrinkles. Our <i>hybrid animation</i> is tailored to the specific characteristics of large- and fine-scale facial(More)
We present a new shape-matching deformation model that allows for efficient handling of topological changes and dynamic adaptive selection of levels of detail. Similar to the recently presented Fast Lattice Shape Matching (FLSM), we compute the position of simulation nodes by convolution of rigid shape matching operators on many overlapping regions, but we(More)
The large-scale mechanical behavior of woven cloth is determined by the mechanical properties of the yarns, the weave pattern, and frictional contact between yarns. Using standard simulation methods for elastic rod models and yarn-yarn contact handling, the simulation of woven garments at realistic yarn densities is deemed intractable. This paper introduces(More)
This paper introduces a data-driven process for designing and fabricating materials with desired deformation behavior. Our process starts with measuring deformation properties of base materials. For each base material we acquire a set of example deformations, and we represent the material as a non-linear stress-strain relationship in a finite-element model.(More)
We present a novel and fast algorithm to compute penetration depth (PD) between two polyhedral models for physically-based animation. Given two overlapping polyhedra, it computes the minimal translation distance to separate them using a combination of object-space and image-space techniques. The algorithm computes pairwise Minkowski sums of decomposed(More)
This paper presents a modular algorithm for six-degree-of-freedom (6-DOF) haptic rendering. The algorithm is aimed to provide transparent manipulation of rigid models with a high polygon count. On the one hand, enabling a stable display is simplified by exploiting the concept of virtual coupling and employing passive implicit integration methods for the(More)
We present a novel six-degree-of-freedom haptic rendering algorithm using incremental and localized contact computations. It uses an incremental approach for contact and force computations and takes advantage of spatial and temporal coherence between successive frames. As part of a preprocess, we decompose the surface of each polyhedron into convex pieces(More)
Surface texture is among the most salient haptic characteristics of objects; it can induce vibratory contact forces that lead to perception of roughness. In this paper, we present a new algorithm to display haptic texture information resulting from the interaction between two textured objects. We compute contact forces and torques using low-resolution(More)