Miguel A. Méndez-Rojas

Learn More
Here, we address the problem of stabilizing a new helicoid ferrocene. Of course, to obtain a helical complex, it is essential to design suitable organic ligands. The ligands should possess the correct symmetry to match the geometrical requirement of the metal center. We propose in silico a beautiful helix that consists of one polycyclic hydrocarbon composed(More)
The introduction of biocompatible coatings onto nanoparticle surfaces can be synthetically challenging. In this work, calcium phosphate (brushite, CaHPO4⋅2H2O), iron oxide (hematite, α-Fe2O3), zinc oxide (ZnO), and CaHPO4@ZnO and α-Fe2O3@ZnO nanoparticles were synthesized and treated with the biocompatible, biodegradable, polysaccharide inulin(More)
Recent advances (during the 2007-2014 period) in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium), are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes with O-, N-, N,O,(More)
A recently proposed system with a central planar tetracoordinate carbon linking two three-membered rings, C(5)(2-), lends itself to extension in one, two, and three dimensions. Our construction of potential realizations begins with an analysis of the electronic structure of C(5)(2-). Dimers such as C(10)Li(3-), C(10)Li(4), and a trimer C(15)Li(6) are then(More)
We summarize our contributions on the quest of new planar tetracoordinate carbon entities (new carbon molecules with exotic chemical structures and strange bonding schemes). We give special emphasis on the rationalization why in this type of molecules the planar configuration is favored over the tetrahedral one. We will concentrate on the latter and will(More)
A series of molecules, based on the smallest carbon cluster with one planar tetracoordinate carbon atom, C5(2-), are presented. To gain a better understanding about which electronic factors contribute to their stabilization, several global reactivity indexes, molecular scalar fields, and magnetic responses were calculated. The optimized bond lengths and the(More)
The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament(More)
The potential energy surface of the hypothetical NaMgAlSiPSCl system (heavy periodane) is exhaustively analyzed via the gradient embedded genetic algorithm (GEGA) in combination with density functional theory (DFT) computations. The electronegativity differences among the elements in both the second and third rows of the periodic table indicate that(More)
Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc(More)