Learn More
Quantifying cell behaviors in animal early embryogenesis remains a challenging issue requiring in toto imaging and automated image analysis. We designed a framework for imaging and reconstructing unstained whole zebrafish embryos for their first 10 cell division cycles and report measurements along the cell lineage with micrometer spatial resolution and(More)
Efficiently obtaining a reliable coronary artery centerline from computed tomography angiography data is relevant in clinical practice. Whereas numerous methods have been presented for this purpose, up to now no standardized evaluation methodology has been published to reliably evaluate and compare the performance of the existing or newly developed coronary(More)
MOTIVATION Multi-view microscopy techniques such as Light-Sheet Fluorescence Microscopy (LSFM) are powerful tools for 3D + time studies of live embryos in developmental biology. The sample is imaged from several points of view, acquiring a set of 3D views that are then combined or fused in order to overcome their individual limitations. Views fusion is(More)
In order to properly understand and model the gene regulatory networks in animals development, it is crucial to obtain detailed measurements, both in time and space, about their gene expression domains. In this paper, we propose a complete computational framework to fulfill this task and create a 3D Atlas of the early zebrafish embryogenesis annotated with(More)
Keywords: Iris segmentation Non-cooperative iris biometry Spatially variant mathematical morphology Grey-level generalized distance a b s t r a c t This paper proposes a new approach for fast iris segmentation that relies on the closed nested structures of iris anatomy (the sclera is brighter than the iris, and the iris is brighter than the pupil) and on(More)
A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal,(More)
BACKGROUND There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist's time. OBJECTIVE This research(More)
The digital reconstruction of the embryogenesis of model organisms from 3D+time data is revolutionizing practices in quantitative and integrative Developmental Biology. A manual and fully supervised image analysis of the massive complex data acquired with new microscopy technologies is no longer an option and automated image processing methods are required(More)
We test the hypothesis that cell membranes in early sea-urchin embryos can be modeled as a Voronoi diagram from nuclei centers. In order to obtain a model of the cell geometry against which to test our Voronoi model hypothesis, we developed a viscous watershed framework that allows segmenting 3D images of living sea-urchin embryos obtained by biphoton láser(More)
Investigating cell dynamics during early zebrafish embryogenesis requires specific image acquisition and analysis strategies. Multiharmonic microscopy, i.e., second- and third-harmonic generations, allows imaging cell divisions and cell membranes in unstained zebrafish embryos from 1- to 1000-cell stage. This paper presents the design and implementation of(More)