Miguel A. F. Sanjuán

Learn More
We consider an overdamped bistable oscillator subject to the action of a biharmonic force with very different frequencies, and study the response of the system when the parameters of the high-frequency force are varied. A resonantlike behavior is obtained when the amplitude or the frequency of this force is modified in an experiment performed by means of an(More)
A system consisting of two map-based neurons coupled through reciprocal excitatory or inhibitory chemical synapses is discussed. After a brief explanation of the basic mechanism behind generation and synchronization of bursts, parameter space is explored to determine less obvious but biologically meaningful regimes and effects. Among them, we show how(More)
We study the dynamics of networks of inhibitory map-based bursting neurons. Linear analysis allows us to understand how the patterns of bursting are determined by network topology and how they depend on the strength of synaptic connections, when inhibition is balanced. Two kinds of patterns are found depending on the symmetry of the network: slow cyclic(More)
The effect of weak dissipation on chaotic scattering is relevant to situations of physical interest. We investigate how the fractal dimension of the set of singularities in a scattering function varies as the system becomes progressively more dissipative. A crossover phenomenon is uncovered where the dimension decreases relatively more rapidly as a(More)
Chaotic scattering in open Hamiltonian systems under weak dissipation is not only of fundamental interest but also important for problems of current concern such as the advection and transport of inertial particles in fluid flows. Previous work using discrete maps demonstrated that nonhyperbolic chaotic scattering is structurally unstable in the sense that(More)
—This paper proposes a serially concatenated system with an outer convolutional channel encoder and an inner chaos-based coded modulator. With the help of the principles of symbolic dynamics, the chaotic modulation can be described in terms of a trellis. Owing to this, we show that the resulting system can be designed and analyzed following developments(More)
—In this paper, we explain how to build a turbo-like structure with binary inputs and chaotic outputs for efficient coding and decoding in additive white Gaussian noise (AWGN). We analyze the convergence of the decoding algorithm, the performance in the error floor region and explain minimum distance properties of the resulting codes.
The Hénon-Heiles Hamiltonian is investigated in the context of chaotic scattering, in the range of energies where escaping from the scattering region is possible. Special attention is paid to the analysis of the different nature of the orbits, and the the invariant sets, such as the stable and unstable manifolds and the chaotic saddle. Furthermore, a(More)