Midori Shimanuki

Learn More
PINK1 and Parkin were first identified as the causal genes responsible for familial forms of early-onset Parkinson's disease (PD), a prevalent neurodegenerative disorder. PINK1 encodes a mitochondrial serine/threonine protein kinase, whereas Parkin encodes an ubiquitin-protein ligase. PINK1 and Parkin cooperate to maintain mitochondrial integrity; however,(More)
In the meiotic prophase nucleus of the fission yeast Schizosaccharomyces pombe, chromosomes are arranged in an oriented manner: telomeres cluster in close proximity to the spindle pole body (SPB), while centromeres form another cluster at some distance from the SPB. We have isolated a mutant, kms1, in which the structure of the meiotic prophase nucleus(More)
A polarized chromosomal arrangement with clustered telomeres in a meiotic prophase nucleus is often called bouquet and is thought to be important for the pairing of homologous chromosomes. Fluorescence in situ hybridization in fission yeast indicated that chromosomal loci are positioned in an ordered manner as anticipated from the bouquet arrangement.(More)
Staurosporine, a potent inhibitor of protein kinase C, arrests fission yeast cell elongation specifically at a stage immediately after cell division. We isolated two genes, which, when carried on multicopy plasmids, confer drug resistance in fission yeast. One, spk1+, encodes a protein kinase highly similar (54% identity) to those encoded by the mammalian(More)
In interphase cells of fission yeast, the spindle pole body (SPB) is thought to be connected with chromosomal centromeres by an as yet unknown mechanism that spans the nuclear membrane. To elucidate this mechanism, we performed two-hybrid screens for proteins that interact with Kms1 and Sad1, which are constitutive membrane-bound components of the SPB that(More)
Two novel protein kinase C (PKC)-like genes, pck1+ and pck2+ were isolated from fission yeast by PCR. Both contain common domains of PKC-related molecules, but lack a putative Ca(2+)-binding domain so that they may belong to the nPKC group. Gene disruption of pck1+ and pck2+ establishes that they share an overlapping essential function for cell viability.(More)
The fission yeast pap1+ gene encodes an AP-1-like transcription factor that contains a leucine zipper motif. We identified a target gene of pap1, the p25 gene. The 5' upstream region of the p25 gene contains an AP-1 site, and by DNase I footprint analysis, we showed that the pap1 protein binds to the AP-1 site as well as to a 14-bp palindrome sequence. p25(More)
Mitogen-activated protein kinase (MAPK) and its direct activator, MAPK kinase (MAPKK), have been suggested to play a pivotal role in a variety of signal transduction pathways in higher eukaryotes. The fission yeast Schizosaccharomyces pombe carries a gene, named spk1, whose product is structurally related to vertebrate MAPK. Here we show that Spk1 is(More)
Fission yeast pap1+ gene encodes an AP-1-like transcription factor, whose overexpression can confer resistance to staurosporine, a protein kinase inhibitor. We have previously identified a target gene (p25) for pap1+, and shown that, crm1+, which is required for maintenance of higher order chromosome structure, negatively regulates pap1-dependent(More)
Activation of the phosphatidylinositol-3 kinase/Akt/mammalian target of the rapamycin (PI3K/Akt/mTOR) pathway and inactivation of wild-type p53 by murine double minute 2 homologue (Mdm2) overexpression are frequent molecular events in acute myeloid leukemia (AML). We investigated the interaction of PI3K/Akt/mTOR and p53 pathways after their simultaneous(More)