Learn More
The main interconnect of the massively parallel Blue Genet/L is a three-dimensional torus network with dynamic virtual cut-through routing. This paper describes both the architecture and the microarchitecture of the torus and a network performance simulator. Both simulation results and hardware measurements are presented.
This paper gives an overview of the BlueGene/L Supercomputer. This is a jointly funded research partnership between IBM and the Lawrence Livermore National Laboratory as part of the United States Department of Energy ASCI Advanced Architecture Research Program. Application performance and scaling studies have recently been initiated with partners at a(More)
The Blue Genet/L compute chip contains two PowerPCt 440 processor cores, private L2 prefetch caches, a shared L3 cache and double-data-rate synchronous dynamic random access memory (DDR SDRAM) memory controller, a collective network interface, a torus network interface, a physical network interface, an interrupt controller, and a bridge interface to slower(More)
Large powerful networks coupled to state-of-the-art processors have traditionally dominated supercomputing. As technology advances, this approach is likely to be challenged by a more cost-effective System-On-A-Chip approach, with higher levels of system integration. The scalability of applications to architectures with tens to hundreds of thousands of(More)
The design of a multipurpose database, mainly as supporting tool for decision makers and public administrators, needs to consider social, economics and environmental factors, which relationships can be better understood when distributed and analyzed along the geographical space. Heading the purpose of identifying land use conflicts and to build up(More)
  • 1