Mickael Guironnet

Learn More
This article presents a new method of camera motion classification based on Transferable Belief Model (TBM). It consists in locating in a video the motions of translation and zoom, and the absence of camera motion (i.e static camera). The classification process is based on a rule-based system that is divided into three stages. From a parametric motion(More)
This paper presents a method of video summarization based on a visual attention model. The visual attention model is a bottom-up one composed of two parallel ways. A static way, biologically inspired, which highlights salient objects. A dynamic way which gives information about moving objects. A three steps summary method is then presented. The first step(More)
This article presents a new system for automatically extracting high-level video concepts. The novelty of the approach lies in the feature fusion method. The system architecture is divided into three steps. The first step consists in creating sensors from a low-level (color or texture) descriptor, and a Support Vector Machine (SVM) learning to recognize a(More)
— This paper presents a new model of human attention that allows salient areas to be extracted from video frames. As automatic understanding of video semantic content is still far from being achieved, attention model tends to mimic the focus of the human visual system. Most existing approaches extract the saliency of images in order to be used in multiple(More)
In this paper, a novel bottom-up visual attention model is proposed. By using static and dynamic features, we determine salient areas in video scenes. The model is characterized by the fusion of spatial information and moving object detection. The static model, inspired by the human system, is achieved by a retinal filtering followed by a cortical(More)
  • 1