Learn More
The induction of long-term potentiation (LTP) in the dentate gyrus of the hippocampus is associated with a rapid and robust transcription of the immediate early gene Zif268. We used a mutant mouse with a targeted disruption of Zif268 to ask whether this gene, which encodes a zinc finger transcription factor, is required for the maintenance of late LTP and(More)
Arc/Arg3.1 is robustly induced by plasticity-producing stimulation and specifically targeted to stimulated synaptic areas. To investigate the role of Arc/Arg3.1 in synaptic plasticity and learning and memory, we generated Arc/Arg3.1 knockout mice. These animals fail to form long-lasting memories for implicit and explicit learning tasks, despite intact(More)
Both serine/threonine and tyrosine phosphorylation of receptor proteins have been implicated in the process of long-term potentiation (LTP), but there has been no direct demonstration of a change in receptor phosphorylation after LTP induction. We show that, after induction of LTP in the dentate gyrus of anesthetized adult rats, there is an increase in the(More)
Aneuploidies are common chromosomal defects that result in growth and developmental deficits and high levels of lethality in humans. To gain insight into the biology of aneuploidies, we manipulated mouse embryonic stem cells and generated a trans-species aneuploid mouse line that stably transmits a freely segregating, almost complete human chromosome 21(More)
In anaesthetised rats, long-term potentiation (LTP) was induced unilaterally in the dentate gyrus by tetanic stimulation of the perforant path. Animals were killed 6 h after LTP induction and dendritic spines and synapses in tetanised and untetanised (contralateral) hippocampal tissue from the middle molecular layer (MML) were examined in the electron(More)
We have demonstrated that immediate early genes can be differentially activated within the central nervous system. We examined the effects of tetanic stimulation in the hippocampus and of noxious sensory stimulation of the spinal cord on the expression of eight immediate early genes. Induction of long-term potentiation (LTP) in the dentate gyrus resulted in(More)
The process of learning involves stable changes in synaptic efficacy for which long-term potentiation (LTP) provides a widely adopted mammalian model. Synaptic modification induced by learning or LTP may involve the action of cell adhesion molecules. One such candidate is the ubiquitous neuronal glycoprotein Thy-1. In mice in which the gene encoding Thy-1(More)
1. We examined the efficacy of low-frequency trains (1-5 Hz) in producing long-term depression (LTD) or depotentiation in the hippocampus of the awake adult rat and in anesthetized rats aged from 10 days to 3 mo. 2. In the dentate gyrus we found no evidence that low-frequency trains produce either depotentiation or LTD in the awake, adult animal or in the(More)
D(-)Aminophosphonovalerate, a specific antagonist of the N-methyl-D-aspartate subtype of glutamate receptor, was perfused through a push-pull cannula into the dentate gyrus of rats anaesthetized with urethan in order to observe its effect on the induction and maintenance of long-term potentiation and on the increase in release of endogenous glutamate(More)
Long-term potentiation (LTP) is a widely studied model of the synaptic basis of information storage in the mammalian brain. The induction of LTP is triggered by the postsynaptic entry of calcium through the channel associated with the N-methyl-D-aspartate (NMDA) receptor, whereas its maintenance is mediated, at least in part, by presynaptic mechanisms. To(More)