Michiya Matsusaki

Learn More
Three-dimensional (3D) tissue constructs consisting of human cells have opened a new avenue for tissue engineering, pharmaceutical and pathophysiological applications, and have great potential to estimate the dynamic pharmacological effects of drug candidates, metastasis processes of cancer cells, and toxicity expression of nano-materials, as a 3D-human(More)
The in vitro fabrication of vascularized tissue is a key challenge in tissue engineering, but little is known about the mechanisms of blood-capillary formation. Here we investigated the mechanisms of in vitro vascularization using precisely-controlled 3D-microenvironments constructed by a sandwich culture using the cell-accumulation technique.(More)
Cell accumulation technique is an extracellular matrix (ECM) nanofilm-based tissue-constructing method that enables formation of multilayered hybrid culture tissues. In this method, ECM-nanofilm is constructed using layer-by-layer assembly of fibronectin and gelatin on culture cells. The ECM-nanofilm promotes cell-to-cell interaction; then the(More)
We reported earlier that hydroxyapatite (HA) formed on/in agarose gels (HA/agarose) produced by alternate soaking process is a bone-filling material possessing osteoconductive and hemostatic effects. This process could allow us to make bone-like apatite that was formed on/in organic polymer hydrogel matrices. Here, we investigated the mechanism of(More)
We fabricated a three-dimensional multilayered blood vessel model using human cells and high-strength PEG hydrogel. The hydrogel tube was physically suitable for perfusion culture, and cells were cultured on the hydrogel surface by binding with fibronectin. Using the layer-by-layer cell multilayered technique, we successfully constructed an artificial blood(More)
The surface design and control of substrates with nanometer- or micrometer-sized polymer films are of considerable interest for both fundamental and applied studies in the biomedical field because of the required surface properties. The layer-by-layer (LbL) technique was discovered in 1991 by Decher and co-workers for the fabrication of polymer multilayers(More)
A novel thermotropic liquid-crystalline biocopolymer, poly{trans-4-hydroxycinnamic acid (4HCA: trans-coumaric acid)-co-lithocholic acid (LCA)}, was synthesized by a thermal polycondensation of 4HCA and LCA. When the LCA composition of P(4HCA-co-LCA) was 0, 5, 7, 23, 27, and 45 mol%, the copolymers showed a nematic liquid-crystalline phase. The melting point(More)
A nanoneedle, an atomic force microscope (AFM) tip etched to 200 nm in diameter and 10 μm in length, can be inserted into cells with the aid of an AFM and has been used to introduce functional molecules into cells and to analyze intracellular information with minimal cell damage. However, some cell lines have shown low insertion efficiency of the(More)