Learn More
Strategically mutated neoceptors, e.g., with anionic residues in TMs 3 and 7 intended for pairing with positively charged amine-modified nucleosides, were derived from the antiinflammatory A(2A) adenosine receptor (AR). Adenosine derivatives functionalized at the 5', 2, and N(6) positions were synthesized. The T88D mutation selectively enhanced the binding(More)
Preference for the northern (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of P2Y(1) receptors was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute (Nandanan et al. J. Med. Chem. 2000, 43, 829-842). We have now combined the ring-constrained(More)
Analysis of the P2Y family of nucleotide-activated G-protein-coupled receptors has been compromised by the lack of selective high-affinity, high-specific-radioactivity radioligands. We have pursued quantification of the P2Y1 receptor through the development of a series of selective P2Y1 receptor antagonists. Recently, we synthesized(More)
Activation of the P2Y(1) nucleotide receptor in platelets by ADP causes changes in shape and aggregation, mediated by activation of phospholipase C (PLC). Recently, MRS2500(2-iodo-N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate) was introduced as a highly potent and selective antagonist for this receptor. We have studied the actions of(More)
[4-[2-(1,1-Diphenylethylsulfanyl)-ethyl]-3,4-dihydro-2H-benzo[1,4]oxazin-8-yloxy]-acetic acid N-Methyl-d-glucamine salt (TRA-418) has both thromboxane A2 (TP)-receptor antagonist and prostacyclin (IP)-receptor agonist properties. The present study examined the advantageous effects of TRA-418 based on the dual activities, over an agent having either activity(More)
In comparison to other classes of cell surface receptors, the medicinal chemistry at P2X (ligand-gated ion channels) and P2Y (G protein-coupled) nucleotide receptors has been relatively slow to develop. Recent effort to design selective agonists and antagonists based on a combination of library screening, empirical modification of known ligands, and(More)
We discovered a novel series of 3,4-dihydro-2H-benzo[1,4]oxazin-8-yloxyacetic acid derivatives as potent dual-acting agents to block the TXA2 receptor and to activate the PGI2 receptor. We report the synthesis, structure-activity relationship, and in vitro, ex vivo, and in vivo pharmacology of this series of compounds.(More)
TRA-418, a compound with both thromboxane A2 receptor (TP receptor) antagonistic and prostacyclin receptor (IP receptor) agonistic activities, was synthesised in our laboratory as a new antithrombotic agent. In this study, we examined the effects of TRA-418 on platelet-leukocyte interactions in human whole blood. Platelet-leukocyte interactions were induced(More)
Prostacyclin (PGI(2)) is an unstable, powerful endogenous inhibitor of platelet aggregation, and thromboxane A(2) (TXA(2)) is an unstable endogenous arachidonic acid metabolite that plays a pivotal role in platelet aggregation and vasoconstriction. The balance between TXA(2) and PGI(2) greatly affects maintenance of the homeostasis of the circulatory(More)
P2Y1 is an ADP-activated G protein-coupled receptor (GPCR). Its antagonists impede platelet aggregation in vivo and are potential antithrombotic agents. Combining ligand and structure-based modeling we generated a consensus model (LIST-CM) correlating antagonist structures with their potencies. We docked 45 antagonists into our rhodopsin-based human P2Y1(More)