Learn More
To investigate the basis of the fluctuating activity present in neocortical neurons in vivo, we have combined computational models with whole-cell recordings using the dynamic-clamp technique. A simplified 'point-conductance' model was used to represent the currents generated by thousands of stochastically releasing synapses. Synaptic activity was(More)
Intracellular recordings of cortical neurons in awake cat and monkey show a depolarized state, sustained firing, and intense subthreshold synaptic activity. It is not known what conductance dynamics underlie such activity and how neurons process information in such highly stochastic states. Here, we combine intracellular recordings in awake and naturally(More)
In vivo, in vitro and computational studies were used to investigate the impact of the synaptic background activity observed in neocortical neurons in vivo. We simulated background activity in vitro using two stochastic Ornstein-Uhlenbeck processes describing glutamatergic and GABAergic synaptic conductances, which were injected into a cell in real time(More)
In vivo recordings have shown that the discharge of cortical neurons is often highly variable and can have statistics similar to a Poisson process with a coefficient of variation around unity. To investigate the determinants of this high variability, we analyzed the spontaneous discharge of Hodgkin-Huxley type models of cortical neurons, in which in(More)
The optimal patterns of synaptic conductances for spike generation in central neurons is a subject of considerable interest. Ideally such conductance time courses should be extracted from membrane potential (V(m)) activity, but this is difficult because the nonlinear contribution of conductances to the V(m) renders their estimation from the membrane(More)
The slow (<1 Hz) oscillation, with its alternating 'up' and 'down' states in individual neurons, is a defining feature of the electroencephalogram (EEG) during slow-wave sleep (SWS). Although this oscillation is well preserved across mammalian species, its physiological role is unclear. Electrophysiological and computational evidence from the cortex and(More)
In this computational study, we investigated (i) the functional importance of correlated basal ganglia (BG) activity associated with Parkinson's disease (PD) motor symptoms by analysing the effects of globus pallidus internum (GPi) bursting frequency and synchrony on a thalamocortical (TC) relay neuron, which received GABAergic projections from this(More)
We investigated the resonance behavior in model neurons receiving a large number of random synaptic inputs, whose distributed nature permits one to introduce correlations between them and investigate its effect on cellular responsiveness. A change in the strength of this background led to enhanced responsiveness, consistent with stochastic resonance.(More)
On the use of analytic expressions for the voltage distribution to analyze intracellular recordings. Note on " Characterization of subthreshold voltage fluctuations in neuronal membranes " Abstract Different analytic expressions for the membrane potential distribution of membranes subject to synaptic noise have been proposed, and can be very helpful to(More)