Michelle Pusey

Learn More
Protein phosphatase 2A (PP2A) negatively regulates tumorigenic signaling pathways, in part, by supporting the function of tumor suppressors like p53. The PP2A methylesterase PME-1 limits the activity of PP2A by demethylating its catalytic subunit. Here, we report the finding that PME-1 overexpression correlates with increased cell proliferation and invasive(More)
Protein methylesterase 1 (PME-1) promotes cancerous phenotypes through the demethylation and inactivation of protein phosphatase 2A. We previously demonstrated that PME-1 overexpression promotes Akt, ERK, and may promote Wnt signaling and increases tumor burden in a xenograft model of endometrial cancer. Here, we show that covalent PME-1 inhibitors decrease(More)
Using yeast two-hybrid analysis, we identified several novel protein interactions for the oncoprotein Cancerous Inhibitor of PP2A (CIP2A) and confirmed a subset of these interactions in human cancer cell lines. Analysis of the interaction in prostate carcinoma cells between CIP2A and leucine-rich repeat-containing protein 59 (LRRC59) suggests that CIP2A is(More)
Protein phosphatase 2A (PP2A) negatively regulates tumorigenic signaling pathways, in part, by supporting the function of tumor suppressors like p53. The PP2A methylesterase PME-1 limits the activity of PP2A by demethylating its catalytic subunit. Here, we report the finding that PME-1 overexpression correlates with increased cell proliferation and invasive(More)
  • 1