Learn More
Effective clearance of apoptotic cells by macrophages is essential for immune homeostasis. The transcriptional pathways that allow macrophages to sense and respond to apoptotic cells are poorly defined. We found that liver X receptor (LXR) signaling was important for both apoptotic cell clearance and the maintenance of immune tolerance. Apoptotic cell(More)
The liver X receptors (LXRs) are nuclear receptors with established roles in the regulation of lipid metabolism. We now show that LXR signaling not only regulates macrophage cholesterol metabolism but also impacts antimicrobial responses. Mice lacking LXRs are highly susceptible to infection with the intracellular bacteria Listeria monocytogenes (LM). Bone(More)
We have previously shown that mouse atherosclerosis regression involves monocyte-derived (CD68+) cell emigration from plaques and is dependent on the chemokine receptor CCR7. Concurrent with regression, mRNA levels of the gene encoding LXRalpha are increased in plaque CD68+ cells, suggestive of a functional relationship between LXR and CCR7. To extend these(More)
Cholesterol is essential for membrane synthesis; however, the mechanisms that link cellular lipid metabolism to proliferation are incompletely understood. We demonstrate here that cellular cholesterol levels in dividing T cells are maintained in part through reciprocal regulation of the LXR and SREBP transcriptional programs. T cell activation triggers(More)
Liver X receptors (LXRs) alpha and beta are transcriptional regulators of cholesterol homeostasis and potential targets for the development of antiatherosclerosis drugs. However, the specific roles of individual LXR isotypes in atherosclerosis and the pharmacological effects of synthetic agonists remain unclear. Previous work has shown that mice lacking(More)
Experimental and clinical studies link Chlamydia pneumoniae infection to atherogenesis and atherothrombotic events, but the underlying mechanisms are unclear. We tested the hypothesis that C. pneumoniae-induced acceleration of atherosclerosis in apolipoprotein E (ApoE)(-/-) mice is reciprocally modulated by activation of TLR-mediated innate immune and liver(More)
We have identified a novel liver X receptor (LXR) agonist (2) that activates the LXRbeta subtype with selectivity over LXRalpha. LXRbeta selectivity was confirmed using macrophages derived from LXR mutant mice. Despite its selectivity and modest potency, the compound can induce APO-AI-dependent cholesterol efflux from macrophages with full efficacy. Our(More)
C/EBP family members contribute to the induction of the interleukin-12 p40 gene and the genes encoding several other mediators of inflammation. Here, we show by chromatin immunoprecipitation that C/EBPbeta binds the p40 promoter following lipopolysaccharide stimulation of peritoneal macrophages. However, three modes of C/EBPbeta regulation reported in other(More)
Macrophages play a central role in the development of atherosclerosis through the accumulation of oxidized LDL (oxLDL). AIM (Spalpha/Api6) has previously been shown to promote macrophage survival; however, its function in atherogenesis is unknown. Here we identify AIM as a critical factor that protects macrophages from the apoptotic effects of oxidized(More)
We examined the effect of liver X receptor (LXR) agonists on vascular calcification, prevalent in atherosclerotic lesions. T0901317, an LXR agonist, augmented protein kinase A (PKA)-induced mineralization and alkaline phosphatase (ALP) activity in aortic smooth muscle cells isolated from wild-type, but not from Lxrbeta(-/-)mice. A six-hour T0901317(More)