Learn More
The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso and soy sauce. Our analysis of(More)
Significant differences exist between mammals and fungi with respect to glycosphingolipid (GSL) structure and biosynthesis. Thus, these compounds, as well as the cellular machinery regulating their expression, have considerable potential as targets for the diagnosis and treatment of fungal diseases. In this study, the major neutral GSL components extracted(More)
Comparison of the chitin synthase genes of Saccharomyces cerevisiae CHS1 and CHS2 with the Candida albicans CHS1 gene (UDP-N-acetyl-D-glucosamine:chitin 4-beta-N-acetylglucosaminyltransferase, EC revealed two small regions of complete amino acid sequence conservation that were used to design PCR primers. Fragments homologous to chitin synthase(More)
Germ tube emergence in filamentous fungi appears to be similar to bud emergence in yeast. Several key proteins (e.g. Cdc42, septins, Bni1 formin, Rho1 and Rho3) play common roles in polarity establishment and early polarity maintenance in both processes. Although germ tube extension, which can be thought of as extreme polarity maintenance, uses some of the(More)
The Golgi complex is a main component of the eukaryotic secretory system and functions to modify nascent proteins sent from the endoplasmic reticulum. Ultrastructural studies of filamentous fungi have shown Golgi to be individual smooth membrane cisternae that are referred to as Golgi equivalents or dictyosomes. The Aspergillus nidulans copA gene encodes a(More)
Filamentous fungi grow by the polar extension of hyphae. This polar growth requires the specification of sites of germ tube or branch emergence, followed by the recruitment of the morphogenetic machinery to those sites for localized cell wall deposition. Researchers attempting to understand hyphal morphogenesis have relied upon the powerful paradigm of bud(More)
Microarray analysis was used to identify transcriptional changes in early vegetative growth of the filamentous fungus Aspergillus nidulans. The results suggest that the previously identified conidiation genes dewA, fluG, and stuA may function in isotropic expansion during early vegetative growth and asexual reproduction.
Growth of the filamentous fungus Aspergillus nidulans begins when the conidium breaks dormancy and grows isotropically. Eventually a germ tube emerges and the axis of growth remains fixed in the primary hypha while new growth axes are established basally to form secondary germ tubes and lateral branches. Rho1 is a Rho family GTPase that has been shown to be(More)
Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the(More)