Michelle M Rank

Learn More
The brain stem provides most of the noradrenaline (NA) present in the spinal cord, which functions to both increase spinal motoneuron excitability and inhibit sensory afferent transmission to motoneurons (excitatory postsynaptic potentials; EPSPs). NA increases motoneuron excitability by facilitating calcium-mediated persistent inward currents (Ca PICs)(More)
Following spinal cord injury (SCI) neurons caudal to the injury are capable of rhythmic locomotor-related activity that can form the basis for substantial functional recovery of stepping despite the loss of crucial brain stem-derived neuromodulators like serotonin (5-HT). Here we investigated the contribution of constitutive 5-HT(2) receptor activity(More)
The recovery of persistent inward currents (PICs) and motoneuron excitability after chronic spinal cord transection is mediated, in part, by the development of supersensitivity to residual serotonin (5HT) below the lesion. The purpose of this paper is to investigate if, like 5HT, endogenous sources of norepinephrine (NE) facilitate motoneuron PICs after(More)
Without intervention after spinal cord injury (SCI), paralyzed skeletal muscles undergo myofiber atrophy and slow-to-fast myofiber type transformations. We hypothesized that chronic spasticity-associated neuromuscular activity after SCI would promote recovery from such deleterious changes. We examined segmental tail muscles of chronic spinal rats with(More)
Sensory afferent transmission and associated spinal reflexes are normally inhibited by serotonin (5-HT) derived from the brain stem. Spinal cord injury (SCI) that eliminates this 5-HT innervation leads to a disinhibition of sensory transmission and a consequent emergence of unusually long polysynaptic excitatory postsynaptic potentials (EPSPs) in(More)
1 Polysynaptic excitatory postsynaptic potentials that trigger spasms 2 after spinal cord injury in rats are inhibited by 5-HT1B and 5-HT1F receptors. 3 4 Katherine C. Murray, Marilee J. Stephens, Michelle Rank, Jessica D’Amico, 5 Monica A. Gorassini and David J. Bennett 6 Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada 7 8 9(More)
  • 1