Michelle L. Pantoya

Learn More
An unexpected mechanism for fast reaction of Al nanoparticles covered by a thin oxide shell during fast heating is proposed and justified theoretically and experimentally. For nanoparticles, the melting of Al occurs before the oxide fracture. The volume change due to melting induces pressures of 1–2 GPa and causes dynamic spallation of the shell. The(More)
The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30-50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing(More)
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t Solid energetic composites have been used and studied in standard air(More)
  • 1