Learn More
To investigate ethylene's role in petal senescence, a comparative analysis of age-related changes in total protein, protease activity, and the expression of nine cysteine protease genes in the corollas of ethylene-sensitive Petuniaxhybrida cv. Mitchell Diploid (MD) and ethylene-insensitive (35S:etr1-1; line 44568) transgenic petunias was conducted. The(More)
BACKGROUND Although numerous factors can influence gene expression, promoters are perhaps the most important component of the regulatory control process. Promoter regions are often defined as a region upstream of the transcriptional start. They contain regulatory elements that interact with regulatory proteins to modulate gene expression. Most genes possess(More)
Virus-induced gene silencing (VIGS) is used to down-regulate endogenous plant genes. VIGS efficiency depends on viral proliferation and systemic movement throughout the plant. Although tobacco rattle virus (TRV)-based VIGS has been successfully used in petunia (Petunia × hybrida), the protocol has not been thoroughly optimized for efficient and uniform gene(More)
Insulin modulates N-methyl-d-aspartate (NMDA) receptors in the CNS and potentiates currents of recombinant NMDA receptors in a subunit-specific manner in Xenopus oocytes. Previously we identified two sites in the NR2B C-terminus as targets for direct phosphorylation by C-type protein kinases (PKCs). Mutating these sites reduced insulin potentiation of(More)
The efficient activation of p90(rsk) by MAP kinase requires their interaction through a docking site located at the C-terminal end of p90(rsk). The MAP kinase p42(mpk1) can associate with p90(rsk) in G(2)-arrested but not in mature Xenopus oocytes. In contrast, an N-terminally truncated p90(rsk) mutant named D2 constitutively interacts with p42(mpk1). In(More)
The cAMP-response element binding protein (CREB)-mediated cell signaling pathway is conserved through evolution and participates in a broad range of complex behaviors of divergent species including man. This study describes the integration of genetic, pharmacologic, and anatomic methods to elucidate a serotonergic signaling pathway by which the CREB homolog(More)
The programmed senescence of flower petals has been shown to involve the fragmentation of nuclear DNA. Nuclear DNA fragmentation, as determined by the TUNEL assay, was detected in Petunia x hybrida corollas during both pollination-induced and age-related senescence. DNA fragmentation was detected late in the lifespan of the flower when corollas were wilting(More)
The programmed degradation of macromolecules during petal senescence allows the plant to remobilize nutrients from dying to developing tissues. Ethylene is involved in regulating the timing of nucleic acid degradation in petunia, but it is not clear if ethylene has a role in the remobilization of phosphorus during petal senescence. To investigate ethylene's(More)
Senescence represents the last phase of petal development during which macromolecules and organelles are degraded and nutrients are recycled to developing tissues. To understand better the post-transcriptional changes regulating petal senescence, a proteomic approach was used to profile protein changes during the senescence of Petuniaxhybrida 'Mitchell(More)
Wzx flippases are crucial for bacterial cell surface polysaccharide assembly as they transport undecaprenyl pyrophosphate-linked sugar repeat units from the cytoplasmic to the periplasmic leaflets of the inner membrane (IM) for final assembly. Our recently reported three-dimensional (3D) model structure of Wzx from Pseudomonas aeruginosa PAO1 (WzxPa)(More)