Michelle L Baack

Learn More
Long-chain polyunsaturated fatty acids (LCPUFA) including docosahexaenoic acid (DHA) are essential for normal vision and neurodevelopment. DHA accretion in utero occurs primarily in the last trimester of pregnancy to support rapid growth and brain development. Premature infants, born before this process is complete, are relatively deficient in this(More)
Long chain polyunsaturated fatty acids (LCPUFA) including docosahexaenoic acid (DHA) and arachidonic acid (ARA) are increasingly transferred from mother to fetus late in pregnancy. Infants born before this transfer is complete are at risk for deficiency. This study determines the relationship between gestational age (GA) and circulating LCPUFA levels to(More)
Embryonic exposure to excess circulating fuels is proposed to underlie diabetic embryopathy. To isolate the effects of hyperglycemia from the many systemic anomalies of diabetes, we infused 4 mg/min glucose into the left uterine artery of non-diabetic pregnant rats on gestation days (GD) 7-9. Right-sided embryos and dams exhibited no glucose elevation.(More)
Intrauterine growth restriction (IUGR) is associated with altered lung development in human and rat. The transcription factor PPARγ, is thought to contribute to lung development. PPARγ is activated by docosahexanoic acid (DHA). One contribution of PPARγ to lung development may be its direct regulation of chromatin modifying enzymes, such as Setd8. In this(More)
Offspring of diabetic pregnancies are at risk of cardiovascular disease at birth and throughout life, purportedly through fuel-mediated influences on the developing heart. Preventative measures focus on glycemic control, but the contribution of additional offenders, including lipids, is not understood. Cellular bioenergetics can be influenced by both(More)
Mitochondrial dysfunction is increasingly recognized and studied as a mediator of heart disease. Extracellular flux analysis (XF) has emerged as a powerful tool to investigate cellular bioenergetics in the context of cardiac health and disease, however its use and interpretation requires improved understanding of the normal metabolic differences in(More)
OBJECTIVE To determine fatty acid levels in the US donor milk supply. STUDY DESIGN Donor human milk samples from Iowa (n=62), Texas (n=5), North Carolina (n=5) and California (n=5) were analyzed by gas chromatography. Levels in the Iowa donor milk were compared before and after pasteurization using Student's t-test. Docosahexaenoic acid (DHA) and(More)
Docosahexaenoic acid (DHA) is an essential fatty acid (FA) important for health and neurodevelopment. Premature infants are at risk of DHA deficiency and circulating levels directly correlate with health outcomes. Most supplementation strategies have focused on increasing DHA content in mother’s milk or infant formula. However, extremely premature infants(More)
RATIONALE Infants born to diabetic or obese mothers are at risk of respiratory distress and persistent pulmonary hypertension of the newborn (PPHN), conceivably through fuel-mediated pathogenic mechanisms. Prior research and preventative measures focus on controlling maternal hyperglycemia, but growing evidence suggests a role for additional circulating(More)
Infants born to women with diabetes or obesity are exposed to excess circulating fuels during fetal heart development and are at higher risk of cardiac diseases. We have previously shown that late-gestation diabetes, especially in conjunction with a maternal high-fat (HF) diet, impairs cardiac functions in rat-offspring. This study investigated changes in(More)