Learn More
Tissue regeneration is an orchestrated progression of cells from an immature state to a mature one, conventionally represented as distinctive cell subsets. A continuum of transitional cell states exists between these discrete stages. We combine the depth of single-cell mass cytometry and an algorithm developed to leverage this continuum by aligning single(More)
Acute myeloid leukemia (AML) manifests as phenotypically and functionally diverse cells, often within the same patient. Intratumor phenotypic and functional heterogeneity have been linked primarily by physical sorting experiments, which assume that functionally distinct subpopulations can be prospectively isolated by surface phenotypes. This assumption has(More)
New high-dimensional, single-cell technologies offer unprecedented resolution in the analysis of heterogeneous tissues. However, because these technologies can measure dozens of parameters simultaneously in individual cells, data interpretation can be challenging. Here we present viSNE, a tool that allows one to map high-dimensional cytometry data onto two(More)
Recent single-cell analysis technologies offer an unprecedented opportunity to elucidate developmental pathways. Here we present Wishbone, an algorithm for positioning single cells along bifurcating developmental trajectories with high resolution. Wishbone uses multi-dimensional single-cell data, such as mass cytometry or RNA-Seq data, as input and orders(More)
An accurate dissection of sources of cell-to-cell variability is crucial for quantitative biology at the single-cell level but has been challenging for the cell cycle. We present Cycler, a robust method that constructs a continuous trajectory of cell-cycle progression from images of fixed cells. Cycler handles heterogeneous microenvironments and does not(More)
BACKGROUND Minimal residual disease (MRD) following treatment is a robust prognostic marker in B lymphoblastic leukemia. However, the detection of MRD by flow cytometric immunophenotyping is technically challenging, and an automated method to detect MRD is therefore desirable. viSNE, a recently developed computational tool based on the t-Distributed(More)
  • 1