Michele Zampieri

Learn More
Our previous data have shown that in L929 mouse fibroblasts the control of methylation pattern depends in part on poly(ADP-ribosyl)ation and that ADP-ribose polymers (PARs), both present on poly(ADP-ribosyl)ated PARP-1 and/or protein-free, have an inhibitory effect on Dnmt1 activity. Here we show that transient ectopic overexpression of CCCTC-binding factor(More)
Aberrant DNA methylation can lead to genome destabilization and to deregulated gene expression. Recently, 5-hydroxymethylcytosine (5hmC), derived from oxidation of 5-methylcytosine (5mC) by the Ten-Eleven Translocation (TET) enzymes, has been detected. 5hmC is now considered as a new epigenetic DNA modification with relevant roles in cell homeostasis(More)
We provided evidence that competitive inhibition of poly(ADP-ribose) polymerases in mammalian cells treated with 3-aminobenzamide causes DNA hypermethylation in the genome and anomalous hypermethylation of CpG islands. The molecular mechanism(s) connecting poly(ADP-ribosyl)ation with DNA methylation is still unknown. Here we show that DNMT1 is able to bind(More)
BACKGROUND Peptidylarginine deiminase 2 (PAD2) and peptidylarginine deiminase 4 (PAD4) are two members of PAD family which are over-expressed in the multiple sclerosis (MS) brain. Through its enzymatic activity PAD2 converts myelin basic protein (MBP) arginines into citrullines - an event that may favour autoimmunity - while peptidylarginine deiminase 4(More)
PARylation [poly(ADP-ribosyl)ation] is involved in the maintenance of genomic methylation patterns through its control of Dnmt1 [DNA (cytosine-5)-methyltransferase 1] activity. Our previous findings indicated that Ctcf (CCCTC-binding factor) may be an important player in key events whereby PARylation controls the unmethylated status of some CpG-rich(More)
Poly(ADP-ribosyl)ation regulates chromatin structure and transcription driving epigenetic events. In particular, Parp1 is able to directly influence DNA methylation patterns controlling transcription and activity of Dnmt1. Here, we show that ADP-ribose polymer levels and Parp1 expression are noticeably high in mouse primordial germ cells (PGCs) when the(More)
A complex interplay between multiple biological effects shapes the aging process. The advent of genome-wide quantitative approaches in the epigenetic field has highlighted the effective impact of epigenetic deregulation, particularly of DNA methylation, on aging. Age-associated alterations in DNA methylation are commonly grouped in the phenomenon known as(More)
Oxidative DNA damage has been implicated in the aging process and in some of its features such as telomere shortening and replicative senescence. Poly(ADP-ribosyl)ation is involved in many molecular and cellular processes, including DNA damage detection and repair, chromatin modification, transcription, and cell death pathways. We decided to examine the(More)
Quantitative data from experiments of gene expression are often normalized through levels of housekeeping genes transcription by assuming that expression of these genes is highly uniform. This practice is being questioned as it becomes increasingly clear that the level of housekeeping genes expression may vary considerably in certain biological samples. To(More)
The capability of PARP activity inhibitors to prevent DNA damage recovery suggested the use of these drugs as chemo- and radio-sensitisers for cancer therapy. Our research, carried out on cultured human M14 melanoma cells, was aimed to examine if PJ-34, a potent PARP activity inhibitor of second generation, was per se able to affect the viability of these(More)