Michele L. Pierro

Learn More
Hemodynamic low-frequency (~0.1 Hz) spontaneous oscillations as detected in the brain by near-infrared spectroscopy have potential applications in the study of brain activation, cerebral autoregulation, and functional connectivity. In this work, we have investigated the phase lag between oscillations of cerebral deoxy- and oxy-hemoglobin concentrations in(More)
We have investigated the amplitude and phase of spontaneous low-frequency oscillations (LFOs) of the cerebral deoxy- and oxy-hemoglobin concentrations ([Hb] and [HbO]) in a human sleep study using near-infrared spectroscopy (NIRS). Amplitude and phase analysis was based on the analytic signal method, and phasor algebra was used to decompose measured [Hb](More)
We report an experimental validation and applications of the new hemodynamic model presented in the companion article (Fantini, 2014-this issue) both in the frequency domain and in the time domain. In the frequency domain, we have performed diffuse optical measurements for coherent hemodynamics spectroscopy (CHS) on the brain and calf muscle of human(More)
We present a pilot clinical application of coherent hemodynamics spectroscopy (CHS), a technique to investigate cerebral hemodynamics at the microcirculatory level. CHS relies on frequency-resolved measurements of induced cerebral hemodynamic oscillations that are measured with near-infrared spectroscopy (NIRS) and analyzed with a hemodynamic model. We have(More)
RATIONALE AND OBJECTIVES Perturbations in cerebral blood volume (CBV), blood flow (CBF), and metabolic rate of oxygen (CMRO2) lead to associated changes in tissue concentrations of oxy- and deoxy-hemoglobin (ΔO and ΔD), which can be measured by near-infrared spectroscopy (NIRS). A novel hemodynamic model has been introduced to relate physiological(More)
A novel hemodynamic model has been recently introduced, which provides analytical relationships between the changes in cerebral blood volume (CBV), cerebral blood °ow (CBF), and cerebral metabolic rate of oxygen (CMRO2), and associated changes in the tissue concentrations of oxyand deoxy-hemoglobin ( O and D) measured with near-infrared spectroscopy (NIRS)(More)
  • 1