Learn More
Norwalk virus, a noncultivatable human calicivirus, is the major cause of epidemic gastroenteritis in humans. The first x-ray structure of a calicivirus capsid, which consists of 180 copies of a single protein, has been determined by phase extension from a low-resolution electron microscopy structure. The capsid protein has a protruding (P) domain connected(More)
BACKGROUND Noroviruses are the leading cause of viral gastroenteritis. Because a suitable in vitro culture system for the human virus has yet to be developed, many basic details of the infection process are unknown. Murine norovirus (MNV) serves as a model system for the study of norovirus infection. Recently it was shown that infection of RAW 264.7 cells(More)
Mechanisms by which viruses counter innate host defense responses generally involve inhibition of one or more components of the interferon (IFN) system. Multiple steps in the induction and amplification of IFN signaling are targeted for inhibition by viral proteins, and many of the IFN antagonists have direct or indirect effects on activation of latent(More)
BACKGROUND Norovirus genomic and subgenomic RNAs are covalently linked at the 5' nucleotide to a 15 kD protein called VPg. VPg of two human norovirus strains binds translation initiation factor eIF3 and other eIFs in vitro, suggesting VPg functions in initiation of protein synthesis on viral RNA. Human norovirus strains are not cultivable, and thus(More)
Noroviruses cause the majority of epidemic outbreaks of acute viral gastroenteritis worldwide. Human norovirus strains do not grow in cell culture, but recent carbohydrate binding, sequence and structural analyses have begun to define functional domains in the norovirus capsid that may be conserved among multiple antigenic types. The purpose of this study(More)
Antihydrogen spectroscopy promises precise tests of the symmetry of matter and antimatter, and can possibly offer new insights into the baryon asymmetry of the universe. Antihydrogen is, however, difficult to synthesize and is produced only in small quantities. The ALPHA collaboration is therefore pursuing a path towards trapping cold antihydrogen to permit(More)
BACKGROUND Rotaviruses are known to modulate the innate antiviral defense response driven by IFN. The purpose of this study was to identify changes in the cellular proteome in response to rotavirus infection in the context of the IFN response. We also sought to identify proteins outside the IFN induction and signaling pathway that were modulated by(More)
BACKGROUND There is widespread interest in the use of innate immune modulators as a defense strategy against infectious pathogens. Using rotavirus as a model system, we developed a cell-based, moderate-throughput screening (MTS) assay to identify compounds that reduce rotavirus infectivity in vitro, toward a long-term goal of discovering immunomodulatory(More)
Glycyrrhizin (GA) and primary metabolite 18β-glycyrrhetinic acid (GRA) are pharmacologically active components of the medicinal licorice root, and both have been shown to have antiviral and immunomodulatory properties. Although these properties are well established, the mechanisms of action are not completely understood. In this study, GA and GRA were(More)
Glycyrrhizin, an abundant bioactive component of the medicinal licorice root is rapidly metabolized by gut commensal bacteria into 18β-glycyrrhetinic acid (GRA). Either or both of these compounds have been shown to have antiviral, anti-hepatotoxic, anti-ulcerative, anti-tumor, anti-allergenic and anti-inflammatory activity in vitro or in vivo. In this(More)