Michele C. Connelly

Learn More
Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose(More)
Cancers are characterized by non-random chromosome copy number alterations that presumably contain oncogenes and tumor-suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here we report a cross-species in vivo screen of 84 candidate oncogenes and 39 candidate TSGs, located within 28(More)
Quantitative structure-activity relationship (QSAR) models have been developed for a data set of 3133 compounds defined as either active or inactive against P. falciparum. Because the data set was strongly biased toward inactive compounds, different sampling approaches were employed to balance the ratio of actives versus inactives, and models were(More)
Repositioning of existing drugs has been suggested as a fast track for developing new anti-malarial agents. The compound libraries of GlaxoSmithKline (GSK), Pfizer and AstraZeneca (AZ) comprising drugs that have undergone clinical studies in other therapeutic areas, but not achieved approval, and a set of US Food and Drug Administration (FDA)-approved drugs(More)
Over 216 million malaria cases are reported annually worldwide and about a third of these cases, primarily children under the age of five years old, will not survive the infection. Despite this significant world health impact, only a limited number of therapeutic agents are currently available. The lack of scaffold diversity poses a threat in the event that(More)
A diverse library of pre-fractionated plant extracts, generated by an automated high-throughput system, was tested using an in vitro anti-malarial screening platform to identify known or new natural products for lead development. The platform identifies hits on the basis of in vitro growth inhibition of Plasmodium falciparum and counter-screens for(More)
Cancers are characterized by non-random, chromosome copy number alterations that presumably contain oncogenes and tumor–suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here, we report a cross-species in vivo Users may view, print, copy, and download text and data-mine the(More)
A variety of commercial analogs and a newer series of Sulindac derivatives were screened for inhibition of M. tuberculosis (Mtb) in vitro and specifically as inhibitors of the essential mycobacterial tubulin homolog, FtsZ. Due to the ease of preparing diverse analogs and a favorable in vivo pharmacokinetic and toxicity profile of a representative analog,(More)
Development of resistance against current antimalarial drugs necessitates the search for novel drugs that interact with different targets and have distinct mechanisms of action. Malaria parasites depend upon high levels of glucose uptake followed by inefficient metabolic utilization via the glycolytic pathway, and the Plasmodium falciparum hexose(More)
  • 1