Learn More
Water quality data for 56 long-term monitoring sites in eight European countries are used to assess freshwater responses to reductions in acid deposition at a large spatial scale. In a consistent analysis of trends from 1980 onwards, the majority of surface waters (38 of 56) showed significant (p ≤ 0.05) decreasing trends in pollution-derived sulphate. Only(More)
The MAGIC model was used to evaluate the relative sensitivity of several possible climate-induced effects on the recovery of soil and surface water from acidification. A common protocol was used at 14 intensively studied sites in Europe and eastern North America. The results show that several of the factors are of only minor importance (increase in pCO(2)(More)
Key Points: • Lake surface waters are warming rapidly but are spatially heterogeneous • Ice-covered lakes are typically warming at rates greater than air temperatures • Both geomorphic and climate factors influence lake warming rates Supporting Information: • Figures S1–S4 and Tables S1–S4 Citation: O'Reilly, C. M., et al. (2015), Rapid and highly variable(More)
Different precipitation regimes across Patagonia generate an environmental gradient that is expected to reflect upon the solute composition and concentration of lake water through the ensuing differences in water balance. In turn, this hydrochemical gradient could influence the occurrence and distribution of ostracods in the area. A cluster analysis on(More)
The main aim of the international UNECE monitoring program ICP Waters under the Convention of Long-range Transboundary Air Pollution (CLRTAP) is to assess, on a regional basis, the degree and geographical extent of the impact of atmospheric pollution, in particular acidification, on surface waters. Regional trends are calculated for 12 geographical regions(More)
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains(More)
The dynamic model MAGIC was calibrated and applied to selected sites in northwestern Italy (3 rivers, 10 alpine lakes) to predict the future response of surface water to different scenarios of atmospheric deposition of S and N compounds. Results at the study sites suggest that several factors other than atmospheric deposition may influence the long-term(More)
The increase in emission of sulphur oxides and nitrogen (both oxidised and reduced forms) since the mid-1800s caused a severe decline in pH and ANC in acid-sensitive surface waters across Europe. Since c.1980, these emissions have declined and trends towards recovery from acidification have been widely observed in time-series of water chemistry data. In(More)
The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years) series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing(More)