Learn More
Human amniotic fluid stem (hAFS) cells, a novel class of broadly multipotent stem cells that share characteristics of both embryonic and adult stem cells, have been regarded as promising candidate for cell therapy. Taking advantage by the well-established murine model of acute kidney injury (AKI), we studied the proregenerative effect of hAFS cells in(More)
The potential for in vitro colonization of decellularized valves by human bone marrow mesenchymal stem cells (hBM-MSCs) towards the anisotropic layers ventricularis and fibrosa and in homo- vs. heterotypic cell-ECM interactions has never been investigated. hBM-MSCs were expanded and characterized by immunofluorescence and FACS analysis. Porcine and human(More)
The potential of collagen scaffolds for promoting angiogenesis/arteriogenesis was studied in vivo by implantation on healthy or cryoinjured left ventricles of rats up to 60 days post-injury. Blood vessels content and extra-vascular cell infiltration were evaluated within the collagen scaffold, the cryoinjured areas, and the "border zones" of the myocardium(More)
Stem cell therapy is in constant need of new cell sources to conceive regenerative medicine approaches for diseases that are still without therapy. Scientists drew the attention toward amniotic membrane and amniotic fluid stem cells, since these sources possess many advantages: first of all as cells can be extracted from discarded foetal material it is(More)
Human amniotic fluid-derived stem (AFS) cells, similarly to embryonic stem cells, could possess privileged immunological characteristics suitable for a successful transplantation even in a discordant xenograft system. We investigated whether AFS cells could be fruitfully used in a rat model of myocardial infarction. c-kit immunomagnetic-sorted AFS cells(More)
Satellite cells (SCs) represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was(More)
The success of skeletal muscle reconstruction depends on finding the most effective, clinically suitable strategy to engineer myogenic cells and biocompatible scaffolds. Satellite cells (SCs), freshly isolated or transplanted within their niche, are presently considered the best source for muscle regeneration. Here, we designed and developed the delivery of(More)
PURPOSE Wound healing of the cryo-injured bladder can bring about organ remodeling because of incomplete reconstitution of depleted smooth muscle cells. Stem cell transplantation could be beneficial to improve smooth muscle cell regeneration and/or modulate the remodeling process. The repair of bladder injury using adult-type stem cells would be useful for(More)
Mutations in the survival of motor neuron gene (SMN1) are responsible for spinal muscular atrophy, a fatal neuromuscular disorder. Mice carrying a homozygous deletion of Smn exon 7 directed to skeletal muscle (HSA-Cre, Smn(F7/F7) mice) present clinical features of human muscular dystrophies for which new therapeutic approaches are highly warranted. Herein(More)
AIMS/HYPOTHESIS Satellite cells are responsible for postnatal skeletal muscle regeneration. It has been demonstrated that mouse satellite cells behave as multipotent stem cells. We studied the differentiation capacities of human satellite cells and evaluated the effect of the insulin sensitiser rosiglitazone, a well known peroxisome proliferative activated(More)