Michela Castagna

Learn More
Active solute uptake in bacteria, fungi, plants, and animals is known to be mediated by cotransporters that are driven by Na+ or H+ gradients. The present work extends the Na+ and H+ dogma by including the H+ and K+ paradigm. Lepidopteran insect larvae have a high K+ and a low Na+ content, and their midgut cells lack Na+/K+ ATPase. Instead, an H+(More)
In mammalian cells, the uptake of amino acids is mediated by specialized, energy-dependent and passive transporters with overlapping substrate specificities. Most energy-dependent transporters are coupled either to the cotransport of Na+ or Cl- or to the countertransport of K+. Passive transporters are either facilitated transporters or channels. As a(More)
To investigate the peculiar ionic specificity of KAAT1, an Na+- and K+-coupled amino acid cotransporter from Lepidoptera, a detailed analysis of membrane topology predictions was performed, together with sequence comparison with strictly Na+-dependent mammalian cotransporters from the same family. The analysis identified aspartate 338, a residue present(More)
K-activated amino acid transporter 1 (KAAT1) and cation-anion-activated amino acid transporter/channel 1 (CAATCH1) are amino acid cotransporters, belonging to the Na/Cl-dependent neurotransmitter transporter family (also called SLC6/NSS), that have been cloned from Manduca sexta midgut. They have been thoroughly studied by expression in Xenopus laevis(More)
The role of intracellular ions on the reverse GABA transport by the neuronal transporter GAT1 was studied using voltage-clamp and [(3)H]GABA efflux determinations in Xenopus oocytes transfected with heterologous mRNA. Reverse transport was induced by intracellular GABA injections and measured in terms of the net outward current generated by the transporter.(More)
1. The transient and steady-state currents induced by voltage jumps in Xenopus oocytes expressing the lepidopteran amino acid co-transporter KAAT1 have been investigated by two-electrode voltage clamp. 2. KAAT1-expressing oocytes exhibited membrane currents larger than controls even in the absence of amino acid substrate (uncoupled current). The selectivity(More)
We investigated the role of the Q291 glutamine residue in the functioning of the rat gamma-aminobutyric acid (GABA) transporter GAT-1. Q291 mutants cannot transport GABA or give rise to transient, leak and transport-coupled currents even though they are targeted to the plasma membrane. Coexpression experiments of wild-type and Q291 mutants suggest that(More)
The substrate specificity of KAAT1, a Na+- and K+-dependent neutral amino acid cotransporter cloned from the larva of the invertebrate Manduca sexta and belonging to the SLC6A gene family has been investigated using electrophysiological and radiotracer methods. The specificity of KAAT1 was compared to that of CAATCH1, a strictly related transporter with(More)
The Nramp (Slc11) protein family is widespread in bacteria and eukaryotes, and mediates transport of divalent metals across cellular membranes. The social amoeba Dictyostelium discoideum has two Nramp proteins. Nramp1, like its mammalian ortholog (SLC11A1), is recruited to phagosomal and macropinosomal membranes, and confers resistance to pathogenic(More)
Cytoplasmic and nuclear protein kinase activities from perfused rat liver have been studied in response to dibutyryl-adenosine cyclic 3':5'-monophosphate added at a concentration that stimulates hepatic gluconeogenesis (100 muM). Total nuclear protein kinase, as assayed using a mixed histone fraction as phosphate acceptor, is increased by 5-fold within 8(More)