Michela Campagna

Learn More
Infection by herpesviruses causes a dramatic disturbance of PML oncogenic domains (PODs) that has been suggested to be essential for viral lytic replication. Several proteins from Kaposi's sarcoma-associated herpesvirus (KSHV) have been tested as putative POD-disrupting factors with negative results. Here, we show that LANA2, a viral protein that is(More)
Rotavirus genomes contain 11 double-stranded (ds) RNA segments. Genome segment 11 encodes the non-structural protein NSP5 and, in some strains, also NSP6. NSP5 is produced soon after viral infection and localizes in cytoplasmic viroplasms, where virus replication takes place. RNA interference by small interfering (si) RNAs targeted to genome segment 11 mRNA(More)
The multifunctional Kaposi's sarcoma-associated herpesvirus (KSHV) latent protein latency-associated nuclear antigen 2 (LANA2) has a critical role in KSHV-induced B-cell malignancies. LANA2 increases the level of small ubiquitin-like modifier (SUMO)2-ubiquitin-modified PML and induces the disruption of PML oncogenic domains (PODs) by a process that requires(More)
The rotavirus (RV) non-structural protein 5, NSP5, is encoded by the smallest of the 11 genomic segments and localizes in 'viroplasms', cytoplasmic inclusion bodies in which viral RNA replication and packaging take place. NSP5 is essential for the replicative cycle of the virus because, in its absence, viroplasms are not formed and viral RNA replication and(More)
Resveratrol is a natural compound produced by certain plants on various stimuli. In recent years, extensive research on resveratrol has been carried out, demonstrating its capacity to prevent a wide variety of conditions, including cardiovascular diseases and cancer, and to control fungal, bacterial and viral infections. In the present review, we summarize(More)
SIRT1, the closest mammalian homolog of yeast Sir2, is an NAD(+)-dependent deacetylase with relevant functions in cancer, aging, and metabolism among other processes. SIRT1 has a diffuse nuclear localization but is recruited to the PML nuclear bodies (PML-NBs) after PML upregulation. However, the functions of SIRT1 in the PML-NBs are unknown. In this study(More)
Tumor suppressor p53 is known to be a direct transcriptional target of type I interferons (IFNs), contributing to virus-induced apoptosis, and in turn activating itself the interferon pathway. Acetylation, among many other post-translational modifications of p53, is thought to exert a crucial role regulating p53 activity. Here, we examined the contribution(More)
The crucial function of the PTEN tumor suppressor in multiple cellular processes suggests that its activity must be tightly controlled. Both, membrane association and a variety of post-translational modifications, such as acetylation, phosphorylation, and mono- and polyubiquitination, have been reported to regulate PTEN activity. Here, we demonstrated that(More)
Rotavirus morphogenesis starts in intracellular inclusion bodies called viroplasms. RNA replication and packaging are mediated by several viral proteins, of which VP1, the RNA-dependent RNA polymerase, and VP2, the core scaffolding protein, were shown to be sufficient to provide replicase activity in vitro. In vivo, however, viral replication complexes also(More)
Rotavirus genome replication and the first steps of virus morphogenesis take place in cytoplasmic viral factories, called viroplasms, containing four structural (VP1, VP2, VP3 and VP6) and two non-structural (NSP2 and NSP5) proteins. NSP2 and NSP5 have been shown to be essential for viroplasm formation and, when co-expressed in uninfected cells, to form(More)