Michel Versluis

Learn More
The snapping shrimp (Alpheus heterochaelis) produces a loud snapping sound by an extremely rapid closure of its snapper claw. One of the effects of the snapping is to stun or kill prey animals. During the rapid snapper claw closure, a high-velocity water jet is emitted from the claw with a speed exceeding cavitation conditions. Hydrophone measurements in(More)
The altered iron concentration in many neurodegenerative diseases such as Alzheimer's disease (AD) has led to the development of MRI sequences that are sensitive to the accompanying changes in the transverse relaxation rate. Heavily T(2)*-weighted imaging sequences at high magnetic field strength (7T and above), in particular, show potential for detecting(More)
The merits of ultrasound contrast agents (UCAs) were already known in the 1960s. It was, however, not until the 1990s that UCAs were clinically approved and marketed. In these years, it was realized that the UCAs are not just efficient ultrasound scatterers, but that their main constituent, the coated gas microbubble, acts as a nonlinear resonator and, as(More)
The main constituent of an ultrasound contrast agent (UCA) is gas-filled microbubbles. An average UCA contains billions per ml. These microbubbles are excellent ultrasound scatterers due to their high compressibility. In an ultrasound field they act as resonant systems, resulting in harmonic energy in the backscattered ultrasound signal, such as energy at(More)
– Granular material is vibro-fluidized in N = 2 and N = 3 connected compartments , respectively. For sufficiently strong shaking the granular gas is equi-partitioned, but if the shaking intensity is lowered, the gas clusters in one compartment. The phase transition towards the clustered state is of 2nd order for N = 2 and of 1st order for N = 3. In(More)
Coated microbubbles, unlike tissue are able to scatter sound subharmonically. Therefore, the subharmonic behavior of coated microbubbles can be used to enhance the contrast in ultrasound contrast imaging. Theoretically, a threshold amplitude of the driving pressure can be calculated above which subharmonic oscillations of microbubbles are initiated.(More)
Experiments to study the effect of acoustic forces on individual bubbles in shear flows have been carried out. In the system that we have used, the competition between acoustic and fluid dynamical forces results in a spiraling bubble trajectory. This dynamics is modeled by expressing the balance between Bjerknes and hydrodynamic forces in terms of an(More)
AIM To compare the results of a Computational Fluid Dynamics (CFD) simulation of the irrigant flow within a prepared root canal, during final irrigation with a syringe and a needle, with experimental high-speed visualizations and theoretical calculations of an identical geometry and to evaluate the effect of off-centre positioning of the needle inside the(More)