Learn More
The altered iron concentration in many neurodegenerative diseases such as Alzheimer's disease (AD) has led to the development of MRI sequences that are sensitive to the accompanying changes in the transverse relaxation rate. Heavily T(2)*-weighted imaging sequences at high magnetic field strength (7T and above), in particular, show potential for detecting(More)
The main constituent of an ultrasound contrast agent (UCA) is gas-filled microbubbles. An average UCA contains billions per ml. These microbubbles are excellent ultrasound scatterers due to their high compressibility. In an ultrasound field they act as resonant systems, resulting in harmonic energy in the backscattered ultrasound signal, such as energy at(More)
The merits of ultrasound contrast agents (UCAs) were already known in the 1960s. It was, however, not until the 1990s that UCAs were clinically approved and marketed. In these years, it was realized that the UCAs are not just efficient ultrasound scatterers, but that their main constituent, the coated gas microbubble, acts as a nonlinear resonator and, as(More)
Coated microbubbles, unlike tissue are able to scatter sound subharmonically. Therefore, the subharmonic behavior of coated microbubbles can be used to enhance the contrast in ultrasound contrast imaging. Theoretically, a threshold amplitude of the driving pressure can be calculated above which subharmonic oscillations of microbubbles are initiated.(More)
  • 1