Michel Meunier

Learn More
This paper presents first in vivo experiments for breast tumor detection using transient elastography. This technique has been developed for detection and quantitative mapping of hard lesions in soft tissues. It consists in following the propagation inside soft tissues of very low-frequency shear waves (approximately 60 Hz) generated by a vibrating system(More)
Early diagnosis and appropriate treatment of Escherichia coli (E. coli) O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) are key elements in preventing resultant life-threatening illnesses, such as hemorrhagic colitis, hemolytic uremic syndrome, and septicemia. In this report, we describe the use of surface plasmon resonance (SPR) for the(More)
A femtosecond laser based transfection method using off-resonance plasmonic gold nanoparticles is described. For human cancer melanoma cells, the treatment leads to a very high perforation rate of 70%, transfection efficiency three times higher than for conventional lipofection, and very low toxicity (<1%). Off-resonance laser excitation inhibited the(More)
We present a new hyperspectral darkfield imaging system with a scanned broadband supercontinuum light source. We observed the specific attachment of the functionalized gold plasmonic nanoparticles (AuNPs) targeting CD44(+) human breast cancer cells by conventional and by proposed hyperspectral darkfield microscopy. This wide-field and low phototoxic(More)
The generation of nanobubbles around plasmonic nanostructures is an efficient approach for imaging and therapy, especially in the field of cancer research. We show a novel method using infrared femtosecond laser that generates ≈800 nm bubbles around off-resonance gold nanospheres using 200 mJ/cm(2) 45 fs pulses. We present experimental and theoretical work(More)
In this paper, we report a light driven, non-invasive cell membrane perforation technique based on the localized field amplification by a nanosecond pulsed laser near gold nanoparticles (AuNPs). The optoporation phenomena is investigated with pulses generated by a Nd:YAG laser for two wavelengths that are either in the visible (532 nm) or near infrared(More)
A concept of phase-sensitive Si-based Total Internal Reflection bio- and chemical sensor is presented. The sensor uses the reflection of light from an internal edge of a Si prism, which is in contact with analyte material changing its index of refraction (thickness). Changes of the refractive index are monitored by measuring the differential phase shift(More)
Molecular dynamics (MD) simulations were employed to estimate the diffusion coefficients of small gas molecules (Ar, O2, N2, CO2, and CH4) in amorphous cis-1,4-polybutadiene in the temperature range of 250-400 K. The VT diagram and solubility parameter of the amorphous polymer have been successfully reproduced using a full atomistic potential. Diffusion(More)
Plasmon waveguide resonance (PWR) sensors are particularly useful for biosensing due to their unique ability to perform sensing with two different polarizations. In this paper we report a comprehensive performance comparison between the surface plasmon resonance (SPR) sensor and the PWR sensor in terms of the sensitivity and the refractive index resolution.(More)
Femtosecond laser radiation has been used to ablate a gold target in aqueous beta-cyclodextrin (CD) solutions to produce stable gold nanoparticle colloids with extremely small size (2 to 2.4 nm) and size dispersion (1 to 1.5 nm). On the basis of XPS and zeta-potential measurements, we propose a model involving chemical interactions between the gold and the(More)